1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
//! Module defining script statements.

use super::{ASTFlags, ASTNode, BinaryExpr, Expr, FnCallExpr, Ident};
use crate::engine::{KEYWORD_EVAL, OP_EQUALS};
use crate::func::StraightHashMap;
use crate::tokenizer::Token;
use crate::types::dynamic::Union;
use crate::types::Span;
use crate::{calc_fn_hash, Dynamic, Position, StaticVec, INT};
#[cfg(feature = "no_std")]
use std::prelude::v1::*;
use std::{
    borrow::Borrow,
    fmt,
    hash::{Hash, Hasher},
    mem,
    num::NonZeroUsize,
    ops::{Deref, DerefMut, Range, RangeInclusive},
};

/// _(internals)_ An op-assignment operator.
/// Exported under the `internals` feature only.
///
/// This type may hold a straight assignment (i.e. not an op-assignment).
#[derive(Clone, PartialEq, Hash)]
pub struct OpAssignment {
    /// Hash of the op-assignment call.
    hash_op_assign: u64,
    /// Hash of the underlying operator call (for fallback).
    hash_op: u64,
    /// Op-assignment operator.
    op_assign: Token,
    /// Syntax of op-assignment operator.
    op_assign_syntax: &'static str,
    /// Underlying operator.
    op: Token,
    /// Syntax of underlying operator.
    op_syntax: &'static str,
    /// [Position] of the op-assignment operator.
    pos: Position,
}

impl OpAssignment {
    /// Create a new [`OpAssignment`] that is only a straight assignment.
    #[must_use]
    #[inline(always)]
    pub const fn new_assignment(pos: Position) -> Self {
        Self {
            hash_op_assign: 0,
            hash_op: 0,
            op_assign: Token::Equals,
            op_assign_syntax: OP_EQUALS,
            op: Token::Equals,
            op_syntax: OP_EQUALS,
            pos,
        }
    }
    /// Is this an op-assignment?
    #[must_use]
    #[inline(always)]
    pub fn is_op_assignment(&self) -> bool {
        !matches!(self.op, Token::Equals)
    }
    /// Get information if this [`OpAssignment`] is an op-assignment.
    ///
    /// Returns `( hash_op_assign, hash_op, op_assign, op_assign_syntax, op, op_syntax )`:
    ///
    /// * `hash_op_assign`: Hash of the op-assignment call.
    /// * `hash_op`: Hash of the underlying operator call (for fallback).
    /// * `op_assign`: Op-assignment operator.
    /// * `op_assign_syntax`: Syntax of op-assignment operator.
    /// * `op`: Underlying operator.
    /// * `op_syntax`: Syntax of underlying operator.
    #[must_use]
    #[inline]
    pub fn get_op_assignment_info(
        &self,
    ) -> Option<(u64, u64, &Token, &'static str, &Token, &'static str)> {
        if self.is_op_assignment() {
            Some((
                self.hash_op_assign,
                self.hash_op,
                &self.op_assign,
                self.op_assign_syntax,
                &self.op,
                self.op_syntax,
            ))
        } else {
            None
        }
    }
    /// Get the [position][Position] of this [`OpAssignment`].
    #[must_use]
    #[inline(always)]
    pub const fn position(&self) -> Position {
        self.pos
    }
    /// Create a new [`OpAssignment`].
    ///
    /// # Panics
    ///
    /// Panics if the name is not an op-assignment operator.
    #[must_use]
    #[inline(always)]
    pub fn new_op_assignment(name: &str, pos: Position) -> Self {
        let op = Token::lookup_symbol_from_syntax(name).expect("operator");
        Self::new_op_assignment_from_token(op, pos)
    }
    /// Create a new [`OpAssignment`] from a [`Token`].
    ///
    /// # Panics
    ///
    /// Panics if the token is not an op-assignment operator.
    #[must_use]
    pub fn new_op_assignment_from_token(op_assign: Token, pos: Position) -> Self {
        let op = op_assign
            .get_base_op_from_assignment()
            .expect("op-assignment operator");

        let op_assign_syntax = op_assign.literal_syntax();
        let op_syntax = op.literal_syntax();

        Self {
            hash_op_assign: calc_fn_hash(None, op_assign_syntax, 2),
            hash_op: calc_fn_hash(None, op_syntax, 2),
            op_assign,
            op_assign_syntax,
            op,
            op_syntax,
            pos,
        }
    }
    /// Create a new [`OpAssignment`] from a base operator.
    ///
    /// # Panics
    ///
    /// Panics if the name is not an operator that can be converted into an op-operator.
    #[must_use]
    #[inline(always)]
    pub fn new_op_assignment_from_base(name: &str, pos: Position) -> Self {
        let op = Token::lookup_symbol_from_syntax(name).expect("operator");
        Self::new_op_assignment_from_base_token(&op, pos)
    }
    /// Convert a [`Token`] into a new [`OpAssignment`].
    ///
    /// # Panics
    ///
    /// Panics if the token is cannot be converted into an op-assignment operator.
    #[inline(always)]
    #[must_use]
    pub fn new_op_assignment_from_base_token(op: &Token, pos: Position) -> Self {
        Self::new_op_assignment_from_token(op.convert_to_op_assignment().expect("operator"), pos)
    }
}

impl fmt::Debug for OpAssignment {
    #[cold]
    #[inline(never)]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.is_op_assignment() {
            f.debug_struct("OpAssignment")
                .field("hash_op_assign", &self.hash_op_assign)
                .field("hash_op", &self.hash_op)
                .field("op_assign", &self.op_assign)
                .field("op_assign_syntax", &self.op_assign_syntax)
                .field("op", &self.op)
                .field("op_syntax", &self.op_syntax)
                .field("pos", &self.pos)
                .finish()
        } else {
            fmt::Debug::fmt(&self.pos, f)
        }
    }
}

/// An expression with a condition.
///
/// The condition may simply be [`Expr::BoolConstant`] with `true` if there is actually no condition.
#[derive(Debug, Clone, Default, Hash)]
pub struct ConditionalExpr {
    /// Condition.
    pub condition: Expr,
    /// Expression.
    pub expr: Expr,
}

impl<E: Into<Expr>> From<E> for ConditionalExpr {
    #[inline(always)]
    fn from(value: E) -> Self {
        Self {
            condition: Expr::BoolConstant(true, Position::NONE),
            expr: value.into(),
        }
    }
}

impl<E: Into<Expr>> From<(Expr, E)> for ConditionalExpr {
    #[inline(always)]
    fn from(value: (Expr, E)) -> Self {
        Self {
            condition: value.0,
            expr: value.1.into(),
        }
    }
}

impl ConditionalExpr {
    /// Is the condition always `true`?
    #[inline(always)]
    #[must_use]
    pub const fn is_always_true(&self) -> bool {
        matches!(self.condition, Expr::BoolConstant(true, ..))
    }
    /// Is the condition always `false`?
    #[inline(always)]
    #[must_use]
    pub const fn is_always_false(&self) -> bool {
        matches!(self.condition, Expr::BoolConstant(false, ..))
    }
}

/// _(internals)_ A type containing a range case for a `switch` statement.
/// Exported under the `internals` feature only.
#[derive(Clone, Hash)]
pub enum RangeCase {
    /// Exclusive range.
    ExclusiveInt(Range<INT>, usize),
    /// Inclusive range.
    InclusiveInt(RangeInclusive<INT>, usize),
}

impl fmt::Debug for RangeCase {
    #[cold]
    #[inline(never)]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::ExclusiveInt(r, n) => write!(f, "{}..{} => {n}", r.start, r.end),
            Self::InclusiveInt(r, n) => write!(f, "{}..={} => {n}", *r.start(), *r.end()),
        }
    }
}

impl From<Range<INT>> for RangeCase {
    #[inline(always)]
    fn from(value: Range<INT>) -> Self {
        Self::ExclusiveInt(value, usize::MAX)
    }
}

impl From<RangeInclusive<INT>> for RangeCase {
    #[inline(always)]
    fn from(value: RangeInclusive<INT>) -> Self {
        Self::InclusiveInt(value, usize::MAX)
    }
}

impl IntoIterator for RangeCase {
    type Item = INT;
    type IntoIter = Box<dyn Iterator<Item = Self::Item>>;

    #[inline]
    #[must_use]
    fn into_iter(self) -> Self::IntoIter {
        match self {
            Self::ExclusiveInt(r, ..) => Box::new(r),
            Self::InclusiveInt(r, ..) => Box::new(r),
        }
    }
}

impl RangeCase {
    /// Returns `true` if the range contains no items.
    #[inline]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        match self {
            Self::ExclusiveInt(r, ..) => r.is_empty(),
            Self::InclusiveInt(r, ..) => r.is_empty(),
        }
    }
    /// Size of the range.
    #[inline]
    #[must_use]
    pub fn len(&self) -> INT {
        match self {
            Self::ExclusiveInt(r, ..) if r.is_empty() => 0,
            Self::ExclusiveInt(r, ..) => r.end - r.start,
            Self::InclusiveInt(r, ..) if r.is_empty() => 0,
            Self::InclusiveInt(r, ..) => *r.end() - *r.start() + 1,
        }
    }
    /// Is the specified value within this range?
    #[inline]
    #[must_use]
    pub fn contains(&self, value: &Dynamic) -> bool {
        match value {
            Dynamic(Union::Int(v, ..)) => self.contains_int(*v),
            #[cfg(not(feature = "no_float"))]
            Dynamic(Union::Float(v, ..)) => self.contains_float(**v),
            #[cfg(feature = "decimal")]
            Dynamic(Union::Decimal(v, ..)) => self.contains_decimal(**v),
            _ => false,
        }
    }
    /// Is the specified number within this range?
    #[inline]
    #[must_use]
    pub fn contains_int(&self, n: INT) -> bool {
        match self {
            Self::ExclusiveInt(r, ..) => r.contains(&n),
            Self::InclusiveInt(r, ..) => r.contains(&n),
        }
    }
    /// Is the specified floating-point number within this range?
    #[cfg(not(feature = "no_float"))]
    #[inline]
    #[must_use]
    pub fn contains_float(&self, n: crate::FLOAT) -> bool {
        use crate::FLOAT;

        match self {
            Self::ExclusiveInt(r, ..) => ((r.start as FLOAT)..(r.end as FLOAT)).contains(&n),
            Self::InclusiveInt(r, ..) => ((*r.start() as FLOAT)..=(*r.end() as FLOAT)).contains(&n),
        }
    }
    /// Is the specified decimal number within this range?
    #[cfg(feature = "decimal")]
    #[inline]
    #[must_use]
    pub fn contains_decimal(&self, n: rust_decimal::Decimal) -> bool {
        use rust_decimal::Decimal;

        match self {
            Self::ExclusiveInt(r, ..) => {
                (Into::<Decimal>::into(r.start)..Into::<Decimal>::into(r.end)).contains(&n)
            }
            Self::InclusiveInt(r, ..) => {
                (Into::<Decimal>::into(*r.start())..=Into::<Decimal>::into(*r.end())).contains(&n)
            }
        }
    }
    /// Is the specified range inclusive?
    #[inline(always)]
    #[must_use]
    pub const fn is_inclusive(&self) -> bool {
        match self {
            Self::ExclusiveInt(..) => false,
            Self::InclusiveInt(..) => true,
        }
    }
    /// Get the index to the [`ConditionalExpr`].
    #[inline(always)]
    #[must_use]
    pub const fn index(&self) -> usize {
        match self {
            Self::ExclusiveInt(.., n) | Self::InclusiveInt(.., n) => *n,
        }
    }
    /// Set the index to the [`ConditionalExpr`].
    #[inline(always)]
    pub fn set_index(&mut self, index: usize) {
        match self {
            Self::ExclusiveInt(.., n) | Self::InclusiveInt(.., n) => *n = index,
        }
    }
}

pub type CaseBlocksList = smallvec::SmallVec<[usize; 1]>;

/// _(internals)_ A type containing all cases for a `switch` statement.
/// Exported under the `internals` feature only.
#[derive(Debug, Clone)]
pub struct SwitchCasesCollection {
    /// List of [`ConditionalExpr`]'s.
    pub expressions: StaticVec<ConditionalExpr>,
    /// Dictionary mapping value hashes to [`ConditionalExpr`]'s.
    pub cases: StraightHashMap<CaseBlocksList>,
    /// List of range cases.
    pub ranges: StaticVec<RangeCase>,
    /// Statements block for the default case (there can be no condition for the default case).
    pub def_case: Option<usize>,
}

impl Hash for SwitchCasesCollection {
    #[inline(always)]
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.expressions.hash(state);

        self.cases.len().hash(state);
        self.cases.iter().for_each(|kv| kv.hash(state));

        self.ranges.hash(state);
        self.def_case.hash(state);
    }
}

/// Number of items to keep inline for [`StmtBlockContainer`].
#[cfg(not(feature = "no_std"))]
const STMT_BLOCK_INLINE_SIZE: usize = 8;

/// _(internals)_ The underlying container type for [`StmtBlock`].
/// Exported under the `internals` feature only.
///
/// A [`SmallVec`](https://crates.io/crates/smallvec) containing up to 8 items inline is used to
/// hold a statements block, with the assumption that most program blocks would container fewer than
/// 8 statements, and those that do have a lot more statements.
#[cfg(not(feature = "no_std"))]
pub type StmtBlockContainer = smallvec::SmallVec<[Stmt; STMT_BLOCK_INLINE_SIZE]>;

/// _(internals)_ The underlying container type for [`StmtBlock`].
/// Exported under the `internals` feature only.
#[cfg(feature = "no_std")]
pub type StmtBlockContainer = StaticVec<Stmt>;

/// _(internals)_ A scoped block of statements.
/// Exported under the `internals` feature only.
#[derive(Clone, Hash, Default)]
pub struct StmtBlock {
    /// List of [statements][Stmt].
    block: StmtBlockContainer,
    /// [Position] of the statements block.
    span: Span,
}

impl StmtBlock {
    /// A [`StmtBlock`] that does not exist.
    pub const NONE: Self = Self::empty(Position::NONE);

    /// Create a new [`StmtBlock`].
    #[inline(always)]
    #[must_use]
    pub fn new(
        statements: impl IntoIterator<Item = Stmt>,
        start_pos: Position,
        end_pos: Position,
    ) -> Self {
        Self::new_with_span(statements, Span::new(start_pos, end_pos))
    }
    /// Create a new [`StmtBlock`].
    #[must_use]
    pub fn new_with_span(statements: impl IntoIterator<Item = Stmt>, span: Span) -> Self {
        let mut statements: smallvec::SmallVec<_> = statements.into_iter().collect();
        statements.shrink_to_fit();
        Self {
            block: statements,
            span,
        }
    }
    /// Create an empty [`StmtBlock`].
    #[inline(always)]
    #[must_use]
    pub const fn empty(pos: Position) -> Self {
        Self {
            block: StmtBlockContainer::new_const(),
            span: Span::new(pos, pos),
        }
    }
    /// Returns `true` if this statements block contains no statements.
    #[inline(always)]
    #[must_use]
    pub fn is_empty(&self) -> bool {
        self.block.is_empty()
    }
    /// Number of statements in this statements block.
    #[inline(always)]
    #[must_use]
    pub fn len(&self) -> usize {
        self.block.len()
    }
    /// Get the statements of this statements block.
    #[inline(always)]
    #[must_use]
    pub fn statements(&self) -> &[Stmt] {
        &self.block
    }
    /// Extract the statements.
    #[inline(always)]
    #[must_use]
    pub(crate) fn take_statements(&mut self) -> StmtBlockContainer {
        mem::take(&mut self.block)
    }
    /// Get an iterator over the statements of this statements block.
    #[inline(always)]
    pub fn iter(&self) -> impl Iterator<Item = &Stmt> {
        self.block.iter()
    }
    /// Get the start position (location of the beginning `{`) of this statements block.
    #[inline(always)]
    #[must_use]
    pub const fn position(&self) -> Position {
        (self.span).start()
    }
    /// Get the end position (location of the ending `}`) of this statements block.
    #[inline(always)]
    #[must_use]
    pub const fn end_position(&self) -> Position {
        (self.span).end()
    }
    /// Get the positions (locations of the beginning `{` and ending `}`) of this statements block.
    #[inline(always)]
    #[must_use]
    pub const fn span(&self) -> Span {
        self.span
    }
    /// Get the positions (locations of the beginning `{` and ending `}`) of this statements block
    /// or a default.
    #[inline(always)]
    #[must_use]
    pub const fn span_or_else(&self, def_start_pos: Position, def_end_pos: Position) -> Span {
        Span::new(
            (self.span).start().or_else(def_start_pos),
            (self.span).end().or_else(def_end_pos),
        )
    }
    /// Set the positions of this statements block.
    #[inline(always)]
    pub fn set_position(&mut self, start_pos: Position, end_pos: Position) {
        self.span = Span::new(start_pos, end_pos);
    }
}

impl Deref for StmtBlock {
    type Target = StmtBlockContainer;

    #[inline(always)]
    fn deref(&self) -> &Self::Target {
        &self.block
    }
}

impl DerefMut for StmtBlock {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.block
    }
}

impl Borrow<[Stmt]> for StmtBlock {
    #[inline(always)]
    #[must_use]
    fn borrow(&self) -> &[Stmt] {
        &self.block
    }
}

impl AsRef<[Stmt]> for StmtBlock {
    #[inline(always)]
    #[must_use]
    fn as_ref(&self) -> &[Stmt] {
        &self.block
    }
}

impl AsMut<[Stmt]> for StmtBlock {
    #[inline(always)]
    #[must_use]
    fn as_mut(&mut self) -> &mut [Stmt] {
        &mut self.block
    }
}

impl fmt::Debug for StmtBlock {
    #[cold]
    #[inline(never)]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str("Block")?;
        fmt::Debug::fmt(&self.block, f)?;
        if !self.span.is_none() {
            write!(f, " @ {:?}", self.span())?;
        }
        Ok(())
    }
}

impl From<Stmt> for StmtBlock {
    #[inline]
    fn from(stmt: Stmt) -> Self {
        match stmt {
            Stmt::Block(block) => *block,
            Stmt::Noop(pos) => Self {
                block: StmtBlockContainer::new_const(),
                span: Span::new(pos, pos),
            },
            _ => {
                let pos = stmt.position();
                Self {
                    block: vec![stmt].into(),
                    span: Span::new(pos, Position::NONE),
                }
            }
        }
    }
}

impl IntoIterator for StmtBlock {
    type Item = Stmt;
    #[cfg(not(feature = "no_std"))]
    type IntoIter = smallvec::IntoIter<[Stmt; STMT_BLOCK_INLINE_SIZE]>;
    #[cfg(feature = "no_std")]
    type IntoIter = smallvec::IntoIter<[Stmt; crate::STATIC_VEC_INLINE_SIZE]>;

    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter {
        self.block.into_iter()
    }
}

impl<'a> IntoIterator for &'a StmtBlock {
    type Item = &'a Stmt;
    type IntoIter = std::slice::Iter<'a, Stmt>;

    #[inline(always)]
    fn into_iter(self) -> Self::IntoIter {
        self.block.iter()
    }
}

impl Extend<Stmt> for StmtBlock {
    #[inline(always)]
    fn extend<T: IntoIterator<Item = Stmt>>(&mut self, iter: T) {
        self.block.extend(iter);
    }
}

/// _(internals)_ A flow control block containing:
/// * an expression,
/// * a statements body
/// * an alternate statements body
///
/// Exported under the `internals` feature only.
#[derive(Debug, Clone, Hash)]
pub struct FlowControl {
    /// Flow control expression.
    pub expr: Expr,
    /// Main body.
    pub body: StmtBlock,
    /// Branch body.
    pub branch: StmtBlock,
}

/// _(internals)_ A statement.
/// Exported under the `internals` feature only.
#[derive(Debug, Clone, Hash)]
#[non_exhaustive]
pub enum Stmt {
    /// No-op.
    Noop(Position),
    /// `if` expr `{` stmt `}` `else` `{` stmt `}`
    If(Box<FlowControl>, Position),
    /// `switch` expr `{` literal or range or _ `if` condition `=>` stmt `,` ... `}`
    ///
    /// ### Data Structure
    ///
    /// 0) Hash table for (condition, block)
    /// 1) Default block
    /// 2) List of ranges: (start, end, inclusive, condition, statement)
    Switch(Box<(Expr, SwitchCasesCollection)>, Position),
    /// `while` expr `{` stmt `}` | `loop` `{` stmt `}`
    ///
    /// If the guard expression is [`UNIT`][Expr::Unit], then it is a `loop` statement.
    While(Box<FlowControl>, Position),
    /// `do` `{` stmt `}` `while`|`until` expr
    ///
    /// ### Flags
    ///
    /// * [`NONE`][ASTFlags::NONE] = `while`  
    /// * [`NEGATED`][ASTFlags::NEGATED] = `until`
    Do(Box<FlowControl>, ASTFlags, Position),
    /// `for` `(` id `,` counter `)` `in` expr `{` stmt `}`
    For(Box<(Ident, Ident, FlowControl)>, Position),
    /// \[`export`\] `let`|`const` id `=` expr
    ///
    /// ### Flags
    ///
    /// * [`EXPORTED`][ASTFlags::EXPORTED] = `export`  
    /// * [`CONSTANT`][ASTFlags::CONSTANT] = `const`
    Var(Box<(Ident, Expr, Option<NonZeroUsize>)>, ASTFlags, Position),
    /// expr op`=` expr
    Assignment(Box<(OpAssignment, BinaryExpr)>),
    /// func `(` expr `,` ... `)`
    ///
    /// This is a duplicate of [`Expr::FnCall`] to cover the very common pattern of a single
    /// function call forming one statement.
    FnCall(Box<FnCallExpr>, Position),
    /// `{` stmt`;` ... `}`
    Block(Box<StmtBlock>),
    /// `try` `{` stmt; ... `}` `catch` `(` var `)` `{` stmt; ... `}`
    TryCatch(Box<FlowControl>, Position),
    /// [expression][Expr]
    Expr(Box<Expr>),
    /// `continue`/`break` expr
    ///
    /// ### Flags
    ///
    /// * [`NONE`][ASTFlags::NONE] = `continue`
    /// * [`BREAK`][ASTFlags::BREAK] = `break`
    BreakLoop(Option<Box<Expr>>, ASTFlags, Position),
    /// `return`/`throw` expr
    ///
    /// ### Flags
    ///
    /// * [`NONE`][ASTFlags::NONE] = `return`
    /// * [`BREAK`][ASTFlags::BREAK] = `throw`
    Return(Option<Box<Expr>>, ASTFlags, Position),
    /// `import` expr `as` alias
    ///
    /// Not available under `no_module`.
    #[cfg(not(feature = "no_module"))]
    Import(Box<(Expr, Ident)>, Position),
    /// `export` var `as` alias
    ///
    /// Not available under `no_module`.
    #[cfg(not(feature = "no_module"))]
    Export(Box<(Ident, Ident)>, Position),
    /// Convert a list of variables to shared.
    ///
    /// Not available under `no_closure`.
    ///
    /// # Notes
    ///
    /// This variant does not map to any language structure.  It is currently only used only to
    /// convert normal variables into shared variables when they are _captured_ by a closure.
    #[cfg(not(feature = "no_closure"))]
    Share(Box<crate::FnArgsVec<(crate::ast::Ident, Option<NonZeroUsize>)>>),
}

impl Default for Stmt {
    #[inline(always)]
    #[must_use]
    fn default() -> Self {
        Self::Noop(Position::NONE)
    }
}

impl From<StmtBlock> for Stmt {
    #[inline(always)]
    fn from(block: StmtBlock) -> Self {
        Self::Block(block.into())
    }
}

impl<T: IntoIterator<Item = Self>> From<(T, Position, Position)> for Stmt {
    #[inline(always)]
    fn from(value: (T, Position, Position)) -> Self {
        StmtBlock::new(value.0, value.1, value.2).into()
    }
}

impl<T: IntoIterator<Item = Self>> From<(T, Span)> for Stmt {
    #[inline(always)]
    fn from(value: (T, Span)) -> Self {
        StmtBlock::new_with_span(value.0, value.1).into()
    }
}

impl Stmt {
    /// Is this statement [`Noop`][Stmt::Noop]?
    #[inline(always)]
    #[must_use]
    pub const fn is_noop(&self) -> bool {
        matches!(self, Self::Noop(..))
    }
    /// Get the [options][ASTFlags] of this statement.
    #[inline]
    #[must_use]
    pub const fn options(&self) -> ASTFlags {
        match self {
            Self::Do(_, options, _)
            | Self::Var(_, options, _)
            | Self::BreakLoop(_, options, _)
            | Self::Return(_, options, _) => *options,

            Self::Noop(..)
            | Self::If(..)
            | Self::Switch(..)
            | Self::Block(..)
            | Self::Expr(..)
            | Self::FnCall(..)
            | Self::While(..)
            | Self::For(..)
            | Self::TryCatch(..)
            | Self::Assignment(..) => ASTFlags::empty(),

            #[cfg(not(feature = "no_module"))]
            Self::Import(..) | Self::Export(..) => ASTFlags::empty(),

            #[cfg(not(feature = "no_closure"))]
            Self::Share(..) => ASTFlags::empty(),
        }
    }
    /// Get the [position][Position] of this statement.
    #[must_use]
    pub fn position(&self) -> Position {
        match self {
            Self::Noop(pos)
            | Self::BreakLoop(.., pos)
            | Self::FnCall(.., pos)
            | Self::If(.., pos)
            | Self::Switch(.., pos)
            | Self::While(.., pos)
            | Self::Do(.., pos)
            | Self::For(.., pos)
            | Self::Return(.., pos)
            | Self::Var(.., pos)
            | Self::TryCatch(.., pos) => *pos,

            Self::Assignment(x) => x.0.pos,

            Self::Block(x) => x.position(),

            Self::Expr(x) => x.start_position(),

            #[cfg(not(feature = "no_module"))]
            Self::Import(.., pos) => *pos,
            #[cfg(not(feature = "no_module"))]
            Self::Export(.., pos) => *pos,

            #[cfg(not(feature = "no_closure"))]
            Self::Share(x) => x[0].0.pos,
        }
    }
    /// Override the [position][Position] of this statement.
    pub fn set_position(&mut self, new_pos: Position) -> &mut Self {
        match self {
            Self::Noop(pos)
            | Self::BreakLoop(.., pos)
            | Self::FnCall(.., pos)
            | Self::If(.., pos)
            | Self::Switch(.., pos)
            | Self::While(.., pos)
            | Self::Do(.., pos)
            | Self::For(.., pos)
            | Self::Return(.., pos)
            | Self::Var(.., pos)
            | Self::TryCatch(.., pos) => *pos = new_pos,

            Self::Assignment(x) => x.0.pos = new_pos,

            Self::Block(x) => x.set_position(new_pos, x.end_position()),

            Self::Expr(x) => {
                x.set_position(new_pos);
            }

            #[cfg(not(feature = "no_module"))]
            Self::Import(.., pos) => *pos = new_pos,
            #[cfg(not(feature = "no_module"))]
            Self::Export(.., pos) => *pos = new_pos,

            #[cfg(not(feature = "no_closure"))]
            Self::Share(x) => x.iter_mut().for_each(|(x, _)| x.pos = new_pos),
        }

        self
    }
    /// Does this statement return a value?
    #[must_use]
    pub const fn returns_value(&self) -> bool {
        match self {
            Self::If(..)
            | Self::Switch(..)
            | Self::Block(..)
            | Self::Expr(..)
            | Self::FnCall(..) => true,

            Self::Noop(..)
            | Self::While(..)
            | Self::Do(..)
            | Self::For(..)
            | Self::TryCatch(..) => false,

            Self::Var(..) | Self::Assignment(..) | Self::BreakLoop(..) | Self::Return(..) => false,

            #[cfg(not(feature = "no_module"))]
            Self::Import(..) | Self::Export(..) => false,

            #[cfg(not(feature = "no_closure"))]
            Self::Share(..) => false,
        }
    }
    /// Is this statement self-terminated (i.e. no need for a semicolon terminator)?
    #[must_use]
    pub const fn is_self_terminated(&self) -> bool {
        match self {
            Self::If(..)
            | Self::Switch(..)
            | Self::While(..)
            | Self::For(..)
            | Self::Block(..)
            | Self::TryCatch(..) => true,

            // A No-op requires a semicolon in order to know it is an empty statement!
            Self::Noop(..) => false,

            Self::Expr(e) => match &**e {
                #[cfg(not(feature = "no_custom_syntax"))]
                Expr::Custom(x, ..) if x.is_self_terminated() => true,
                _ => false,
            },

            Self::Var(..)
            | Self::Assignment(..)
            | Self::FnCall(..)
            | Self::Do(..)
            | Self::BreakLoop(..)
            | Self::Return(..) => false,

            #[cfg(not(feature = "no_module"))]
            Self::Import(..) | Self::Export(..) => false,

            #[cfg(not(feature = "no_closure"))]
            Self::Share(..) => false,
        }
    }
    /// Is this statement _pure_?
    ///
    /// A pure statement has no side effects.
    #[must_use]
    pub fn is_pure(&self) -> bool {
        match self {
            Self::Noop(..) => true,
            Self::Expr(expr) => expr.is_pure(),
            Self::If(x, ..) => {
                x.expr.is_pure()
                    && x.body.iter().all(Self::is_pure)
                    && x.branch.iter().all(Self::is_pure)
            }
            Self::Switch(x, ..) => {
                let (expr, sw) = &**x;
                expr.is_pure()
                    && sw.cases.values().flat_map(|cases| cases.iter()).all(|&c| {
                        let block = &sw.expressions[c];
                        block.condition.is_pure() && block.expr.is_pure()
                    })
                    && sw.ranges.iter().all(|r| {
                        let block = &sw.expressions[r.index()];
                        block.condition.is_pure() && block.expr.is_pure()
                    })
                    && sw.def_case.is_some()
                    && sw.expressions[sw.def_case.unwrap()].expr.is_pure()
            }

            // Loops that exit can be pure because it can never be infinite.
            Self::While(x, ..) if matches!(x.expr, Expr::BoolConstant(false, ..)) => true,
            Self::Do(x, options, ..) if matches!(x.expr, Expr::BoolConstant(..)) => match x.expr {
                Expr::BoolConstant(cond, ..) if cond == options.contains(ASTFlags::NEGATED) => {
                    x.body.iter().all(Self::is_pure)
                }
                _ => false,
            },

            // Loops are never pure since they can be infinite - and that's a side effect.
            Self::While(..) | Self::Do(..) => false,

            // For loops can be pure because if the iterable is pure, it is finite,
            // so infinite loops can never occur.
            Self::For(x, ..) => x.2.expr.is_pure() && x.2.body.iter().all(Self::is_pure),

            Self::Var(..) | Self::Assignment(..) | Self::FnCall(..) => false,
            Self::Block(block, ..) => block.iter().all(Self::is_pure),
            Self::BreakLoop(..) | Self::Return(..) => false,
            Self::TryCatch(x, ..) => {
                x.expr.is_pure()
                    && x.body.iter().all(Self::is_pure)
                    && x.branch.iter().all(Self::is_pure)
            }

            #[cfg(not(feature = "no_module"))]
            Self::Import(..) => false,
            #[cfg(not(feature = "no_module"))]
            Self::Export(..) => false,

            #[cfg(not(feature = "no_closure"))]
            Self::Share(..) => false,
        }
    }
    /// Does this statement's behavior depend on its containing block?
    ///
    /// A statement that depends on its containing block behaves differently when promoted to an
    /// upper block.
    ///
    /// Currently only variable definitions (i.e. `let` and `const`), `import`/`export` statements,
    /// and `eval` calls (which may in turn define variables) fall under this category.
    #[inline]
    #[must_use]
    pub fn is_block_dependent(&self) -> bool {
        match self {
            Self::Var(..) => true,

            Self::Expr(e) => match &**e {
                Expr::Stmt(s) => s.iter().all(Self::is_block_dependent),
                Expr::FnCall(x, ..) => !x.is_qualified() && x.name == KEYWORD_EVAL,
                _ => false,
            },

            Self::FnCall(x, ..) => !x.is_qualified() && x.name == KEYWORD_EVAL,

            #[cfg(not(feature = "no_module"))]
            Self::Import(..) | Self::Export(..) => true,

            _ => false,
        }
    }
    /// Is this statement _pure_ within the containing block?
    ///
    /// An internally pure statement only has side effects that disappear outside the block.
    ///
    /// Currently only variable definitions (i.e. `let` and `const`) and `import`/`export`
    /// statements are internally pure, other than pure expressions.
    #[inline]
    #[must_use]
    pub fn is_internally_pure(&self) -> bool {
        match self {
            Self::Var(x, ..) => x.1.is_pure(),

            Self::Expr(e) => match &**e {
                Expr::Stmt(s) => s.iter().all(Self::is_internally_pure),
                _ => self.is_pure(),
            },

            #[cfg(not(feature = "no_module"))]
            Self::Import(x, ..) => x.0.is_pure(),
            #[cfg(not(feature = "no_module"))]
            Self::Export(..) => true,

            _ => self.is_pure(),
        }
    }
    /// Does this statement break the current control flow through the containing block?
    ///
    /// Currently this is only true for `return`, `throw`, `break` and `continue`.
    ///
    /// All statements following this statement will essentially be dead code.
    #[inline]
    #[must_use]
    pub const fn is_control_flow_break(&self) -> bool {
        matches!(self, Self::Return(..) | Self::BreakLoop(..))
    }
    /// Return this [`Stmt`], replacing it with [`Stmt::Noop`].
    #[inline(always)]
    pub fn take(&mut self) -> Self {
        mem::take(self)
    }
    /// Recursively walk this statement.
    /// Return `false` from the callback to terminate the walk.
    pub fn walk<'a>(
        &'a self,
        path: &mut Vec<ASTNode<'a>>,
        on_node: &mut impl FnMut(&[ASTNode]) -> bool,
    ) -> bool {
        // Push the current node onto the path
        path.push(self.into());

        if !on_node(path) {
            return false;
        }

        match self {
            Self::Var(x, ..) => {
                if !x.1.walk(path, on_node) {
                    return false;
                }
            }
            Self::If(x, ..) => {
                if !x.expr.walk(path, on_node) {
                    return false;
                }
                for s in &x.body {
                    if !s.walk(path, on_node) {
                        return false;
                    }
                }
                for s in &x.branch {
                    if !s.walk(path, on_node) {
                        return false;
                    }
                }
            }
            Self::Switch(x, ..) => {
                let (expr, sw) = &**x;

                if !expr.walk(path, on_node) {
                    return false;
                }
                for (.., blocks) in &sw.cases {
                    for &b in blocks {
                        let block = &sw.expressions[b];

                        if !block.condition.walk(path, on_node) {
                            return false;
                        }
                        if !block.expr.walk(path, on_node) {
                            return false;
                        }
                    }
                }
                for r in &sw.ranges {
                    let block = &sw.expressions[r.index()];

                    if !block.condition.walk(path, on_node) {
                        return false;
                    }
                    if !block.expr.walk(path, on_node) {
                        return false;
                    }
                }
                if let Some(index) = sw.def_case {
                    if !sw.expressions[index].expr.walk(path, on_node) {
                        return false;
                    }
                }
            }
            Self::While(x, ..) | Self::Do(x, ..) => {
                if !x.expr.walk(path, on_node) {
                    return false;
                }
                for s in x.body.statements() {
                    if !s.walk(path, on_node) {
                        return false;
                    }
                }
            }
            Self::For(x, ..) => {
                if !x.2.expr.walk(path, on_node) {
                    return false;
                }
                for s in &x.2.body {
                    if !s.walk(path, on_node) {
                        return false;
                    }
                }
            }
            Self::Assignment(x, ..) => {
                if !x.1.lhs.walk(path, on_node) {
                    return false;
                }
                if !x.1.rhs.walk(path, on_node) {
                    return false;
                }
            }
            Self::FnCall(x, ..) => {
                for s in &x.args {
                    if !s.walk(path, on_node) {
                        return false;
                    }
                }
            }
            Self::Block(x, ..) => {
                for s in x.statements() {
                    if !s.walk(path, on_node) {
                        return false;
                    }
                }
            }
            Self::TryCatch(x, ..) => {
                for s in &x.body {
                    if !s.walk(path, on_node) {
                        return false;
                    }
                }
                for s in &x.branch {
                    if !s.walk(path, on_node) {
                        return false;
                    }
                }
            }
            Self::Expr(e) => {
                if !e.walk(path, on_node) {
                    return false;
                }
            }
            Self::Return(Some(e), ..) => {
                if !e.walk(path, on_node) {
                    return false;
                }
            }
            #[cfg(not(feature = "no_module"))]
            Self::Import(x, ..) => {
                if !x.0.walk(path, on_node) {
                    return false;
                }
            }
            _ => (),
        }

        path.pop().unwrap();

        true
    }
}