1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
use std::cmp::Ordering;
use std::convert::TryInto;
use std::error::Error;
use std::fmt::{self, Display, Formatter};
use std::iter;

/// A [Reverse Polish Notation] expression.
///
/// # Printing
///
/// An expression can be printed in one of two ways.
/// By default, the expression is printed using [Reverse Polish Notation] still; however, if the
/// [`#` "alternate printing" flag][fmt#sign0] is passed, the expression will be pretty-printed using infix
/// notation instead, with a minimal amount of parentheses.
///
/// [Reverse Polish Notation]: https://en.wikipedia.org/wiki/Reverse_Polish_notation
#[derive(Debug)]
pub struct RpnExpr(Vec<u8>);

impl RpnExpr {
    /// Constructs a RPN expression from its byte serialization.
    /// This does not check the expression's correctness.
    pub fn from_bytes(bytes: Vec<u8>) -> Self {
        Self(bytes)
    }

    /// Retrieves the expression's serialized bytes.
    pub fn bytes(&self) -> &[u8] {
        &self.0
    }

    /// Yields an iterator over the expression's "operations".
    /// "Operations" may not mean what you think; refer to [`RpnOp`] for more information.
    pub fn iter(&self) -> Iter {
        Iter::new(self)
    }
}

/// An iterator over a [RPN expression][RpnExpr]'s operations (this includes literals).
///
/// Since a RPN expression does not validate the serialized data it's given when constructed,
/// the iteration may fail at any point.
pub struct Iter<'a>(&'a RpnExpr, usize); // Expression, pointer
impl<'a> Iter<'a> {
    fn new(expr: &'a RpnExpr) -> Self {
        Self(expr, 0)
    }

    fn read_u32(&mut self) -> Option<u32> {
        self.0.bytes().get(self.1..self.1 + 4).map(|bytes| {
            let val = u32::from_le_bytes(bytes.try_into().unwrap());
            self.1 += 4;
            val
        })
    }

    fn read_string(&mut self) -> Option<&'a [u8]> {
        let start = self.1;
        loop {
            let c = *self.0.bytes().get(self.1)?;
            self.1 += 1;

            if c == 0 {
                return Some(&self.0.bytes()[start..self.1]);
            }
        }
    }
}
impl<'a> Iterator for Iter<'a> {
    type Item = Result<RpnOp<'a>, RpnIterError>;

    fn next(&mut self) -> Option<Self::Item> {
        if self.1 == self.0.bytes().len() {
            return None;
        }
        let err = Err(RpnIterError::new(self.1)); // What to return in case of error

        let operator = self.0.bytes()[self.1];
        self.1 += 1;
        Some(match operator {
            0x00 => Ok(RpnOp::Add),
            0x01 => Ok(RpnOp::Sub),
            0x02 => Ok(RpnOp::Mul),
            0x03 => Ok(RpnOp::Div),
            0x04 => Ok(RpnOp::Mod),
            0x05 => Ok(RpnOp::Neg),
            0x06 => Ok(RpnOp::Pow),
            0x10 => Ok(RpnOp::BinOr),
            0x11 => Ok(RpnOp::BinAnd),
            0x12 => Ok(RpnOp::Xor),
            0x13 => Ok(RpnOp::Cpl),
            0x21 => Ok(RpnOp::And),
            0x22 => Ok(RpnOp::Or),
            0x23 => Ok(RpnOp::Not),
            0x30 => Ok(RpnOp::Eq),
            0x31 => Ok(RpnOp::Neq),
            0x32 => Ok(RpnOp::Gt),
            0x33 => Ok(RpnOp::Lt),
            0x34 => Ok(RpnOp::Gte),
            0x35 => Ok(RpnOp::Lte),
            0x40 => Ok(RpnOp::Lsh),
            0x41 => Ok(RpnOp::Rsh),
            0x50 => self.read_u32().map_or(err, |id| Ok(RpnOp::BankSym(id))),
            0x51 => self
                .read_string()
                .map_or(err, |string| Ok(RpnOp::BankSect(string))),
            0x52 => Ok(RpnOp::BankSelf),
            0x53 => self
                .read_string()
                .map_or(err, |string| Ok(RpnOp::SizeofSect(string))),
            0x54 => self
                .read_string()
                .map_or(err, |string| Ok(RpnOp::StartofSect(string))),
            0x60 => Ok(RpnOp::HramCheck),
            0x61 => Ok(RpnOp::RstCheck),
            0x80 => self.read_u32().map_or(err, |id| Ok(RpnOp::Int(id))),
            0x81 => self.read_u32().map_or(err, |id| Ok(RpnOp::Sym(id))),
            _ => err,
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        if self.1 == self.0.bytes().len() {
            return (0, Some(0));
        }

        // At any point, there may be a single element left (if it takes a string as argument);
        // however, each element consumes at least one byte, so we have an upper bound.
        (1, Some(self.0.bytes().len() - self.1))
    }
}

/// An error produced while iterating on a [RPN expression][RpnExpr].
/// This can be an early EOF, an operator trying to popping an item off of an empty RPN stack, etc.
#[derive(Debug)]
pub struct RpnIterError(usize);
impl RpnIterError {
    fn new(ofs: usize) -> Self {
        Self(ofs)
    }

    /// The offset within the expression at which the error was encountered.
    pub fn offset(&self) -> usize {
        self.0
    }
}
impl Display for RpnIterError {
    fn fmt(&self, fmt: &mut Formatter) -> Result<(), fmt::Error> {
        write!(fmt, "Error parsing RPN expression at offset {}", self.0)
    }
}
impl Error for RpnIterError {}

// RPN expression printing

impl RpnExpr {
    fn fmt_rpn(&self, fmt: &mut Formatter) -> Result<(), fmt::Error> {
        for (op, prefix) in self.iter().zip(iter::successors(Some(""), |_| Some(" "))) {
            match op {
                Err(err) => write!(fmt, "{}<RPN error@${:04x}>", prefix, err.offset())?,
                Ok(op) => write!(fmt, "{}{}", prefix, op)?,
            }
        }
        Ok(())
    }

    fn fmt_infix(&self, fmt: &mut Formatter) -> Result<(), fmt::Error> {
        let mut nodes = Vec::new();
        // Node ID stack
        let mut stack = Vec::new();
        // Pops a node ID off the stack, erroring out of the whole function if it's empty
        // Additionally, gives the popped node its parent's ID
        macro_rules! pop {
            ($parent:expr) => {
                if let Some(tree) = stack.pop() {
                    tree
                } else {
                    return write!(fmt, "<bad RPN expr, emptied stack>");
                }
            };
        }

        // First, build the expression tree from the RPN
        for op in self.iter() {
            match op {
                Err(err) => return write!(fmt, "<RPN error@${:04x}>", err.offset()),
                Ok(op) => {
                    let next_id = nodes.len();

                    let children = match op.arity() {
                        Arity::Literal => RpnTreeNodeType::Literal,
                        Arity::Unary => {
                            let operand = pop!(next_id);
                            RpnTreeNodeType::Unary(operand)
                        }
                        Arity::Binary => {
                            let rhs = pop!(next_id);
                            let lhs = pop!(next_id);
                            RpnTreeNodeType::Binary { lhs, rhs }
                        }
                    };
                    nodes.push(RpnTreeNode::new(op, children));
                    stack.push(next_id);
                }
            }
        }

        if stack.len() != 1 {
            return write!(fmt, "<bad RPN expr, finished with {} elems>", stack.len());
        }
        // Now, traverse the expression tree
        write_node(&nodes, stack[0], fmt)
    }
}
impl Display for RpnExpr {
    fn fmt(&self, fmt: &mut Formatter) -> Result<(), fmt::Error> {
        if fmt.alternate() {
            self.fmt_infix(fmt)
        } else {
            self.fmt_rpn(fmt)
        }
    }
}

/// A RPN operation; since this means "operation on the RPN stack" here, this includes literals,
/// not just operators.
// We don't have `Eq` because symbol IDs are file-relative
#[derive(Debug, PartialEq)]
pub enum RpnOp<'a> {
    /// `+` operator.
    Add,
    /// `-` operator.
    Sub,
    /// `*` operator.
    Mul,
    /// `/` operator.
    Div,
    /// `%` operator.
    Mod,
    /// Unary `-` operator.
    Neg,
    /// `**` operator.
    Pow,
    /// `|` operator.
    BinOr,
    /// `&` operator.
    BinAnd,
    /// `^` operator.
    Xor,
    /// `~` operator.
    Cpl,
    /// `&&` operator.
    And,
    /// `||` operator.
    Or,
    /// `!` operator.
    Not,
    /// `==` operator.
    Eq,
    /// `!=` operator.
    Neq,
    /// `>` operator.
    Gt,
    /// `<` operator.
    Lt,
    /// `>=` operator.
    Gte,
    /// `<=` operator.
    Lte,
    /// `<<` operator.
    Lsh,
    /// `>>` operator.
    Rsh,
    /// `BANK(Symbol)`
    BankSym(u32),
    /// `BANK("section")`
    BankSect(&'a [u8]),
    /// `BANK(@)`
    BankSelf,
    /// `SIZEOF("section")`
    SizeofSect(&'a [u8]),
    /// `STARTOF("section")`
    StartofSect(&'a [u8]),
    /// HRAM check (check if the value is in HRAM range, then `& 0xFF`).
    HramCheck,
    /// `rst` check (check if the value is a `rst` target, then `| 0xC7`).
    RstCheck,
    /// 32-bit literal.
    Int(u32),
    /// Symbol (referenced by 32-bit ID).
    Sym(u32),
}
/// A RPN operation's [arity].
///
/// [arity]: https://en.wikipedia.org/wiki/Arity
pub enum Arity {
    Literal,
    Unary,
    Binary,
}
impl RpnOp<'_> {
    /// The operation's arity.
    pub fn arity(&self) -> Arity {
        use Arity::*;
        use RpnOp::*;

        match self {
            Add => Binary,
            Sub => Binary,
            Mul => Binary,
            Div => Binary,
            Mod => Binary,
            Neg => Unary,
            Pow => Binary,
            BinOr => Binary,
            BinAnd => Binary,
            Xor => Binary,
            Cpl => Unary,
            And => Binary,
            Or => Binary,
            Not => Unary,
            Eq => Binary,
            Neq => Binary,
            Gt => Binary,
            Lt => Binary,
            Gte => Binary,
            Lte => Binary,
            Lsh => Binary,
            Rsh => Binary,
            BankSym(..) => Literal,
            BankSect(..) => Literal,
            BankSelf => Literal,
            SizeofSect(..) => Literal,
            StartofSect(..) => Literal,
            HramCheck => Unary,
            RstCheck => Unary,
            Int(..) => Literal,
            Sym(..) => Literal,
        }
    }

    /// The operation's precedence.
    ///
    /// # Panics
    ///
    /// This function panics if the operation is not a binary operator.
    pub fn precedence(&self) -> u8 {
        use RpnOp::*;

        // "Operators" in rgbasm(5)
        match self {
            Pow => 6,
            Mul | Div | Mod => 5,
            Lsh | Rsh => 4,
            BinAnd | BinOr | Xor => 3,
            Add | Sub => 2,
            Eq | Neq | Gt | Lt | Gte | Lte => 1,
            And | Or => 0,

            // There is no precedence for non-binary operators...
            Neg | Cpl | Not | BankSym(..) | BankSect(..) | BankSelf | SizeofSect(..)
            | StartofSect(..) | HramCheck | RstCheck | Int(..) | Sym(..) => unreachable!(),
        }
    }

    /// Whether this operation is associative; that is, if `A op (B op C) == (A op B) op C`.
    ///
    /// # Panics
    ///
    /// This function panics if the operation is not a binary operator.
    pub fn is_associative(&self) -> bool {
        use RpnOp::*;

        match self {
            Add | Mul | BinOr | BinAnd | Xor | And | Or => true,
            Sub | Div | Mod | Pow | Eq | Neq | Gt | Lt | Gte | Lte | Lsh | Rsh => false,

            // There is no associativity for non-binary operators...
            Neg | Cpl | Not | BankSym(..) | BankSect(..) | BankSelf | SizeofSect(..)
            | StartofSect(..) | HramCheck | RstCheck | Int(..) | Sym(..) => unreachable!(),
        }
    }

    /// Computes whether parens are needed (for pretty-printing) around a child expression, with
    /// the given parent.
    pub fn needs_parens(&self, parent: &RpnOp<'_>, is_left: bool) -> bool {
        use Arity::*;

        match self.arity() {
            // Literals have no precedence, and unary operations always have priority over binary
            Literal | Unary => false,
            Binary => {
                // For binary, we need to compare the precedences
                use Ordering::*;

                match parent.precedence().cmp(&self.precedence()) {
                    Less => false,   // The child has priority
                    Greater => true, // The parent has priority, so override that by using parens
                    Equal => {
                        // Parens are only required for the right branch if the parent operation is
                        // *not* associative with the child one (which implies they're the same)
                        !is_left && (self != parent || !self.is_associative())
                    }
                }
            }
        }
    }
}

impl Display for RpnOp<'_> {
    fn fmt(&self, fmt: &mut Formatter) -> Result<(), fmt::Error> {
        use RpnOp::*;

        match self {
            Add => write!(fmt, "+"),
            Sub => write!(fmt, "-"),
            Mul => write!(fmt, "*"),
            Div => write!(fmt, "/"),
            Mod => write!(fmt, "%"),
            Neg => write!(fmt, "-()"),
            Pow => write!(fmt, "**"),
            BinOr => write!(fmt, "|"),
            BinAnd => write!(fmt, "&"),
            Xor => write!(fmt, "^"),
            Cpl => write!(fmt, "~"),
            And => write!(fmt, "&&"),
            Or => write!(fmt, "||"),
            Not => write!(fmt, "!"),
            Eq => write!(fmt, "=="),
            Neq => write!(fmt, "!="),
            Gt => write!(fmt, ">"),
            Lt => write!(fmt, "<"),
            Gte => write!(fmt, ">="),
            Lte => write!(fmt, "<="),
            Lsh => write!(fmt, "<<"),
            Rsh => write!(fmt, ">>"),
            BankSym(id) => write!(fmt, "BANK(Sym#{})", id),
            BankSect(name) => write!(fmt, "BANK(\"{}\")", String::from_utf8_lossy(&name)),
            BankSelf => write!(fmt, "BANK(@)"),
            SizeofSect(name) => write!(fmt, "SIZEOF(\"{}\")", String::from_utf8_lossy(&name)),
            StartofSect(name) => write!(fmt, "STARTOF(\"{}\")", String::from_utf8_lossy(&name)),
            HramCheck => write!(fmt, "HRAM?"),
            RstCheck => write!(fmt, "RST?"),
            Int(val) => write!(fmt, "${:04x}", val),
            Sym(id) => write!(fmt, "Sym#{}", id),
        }
    }
}

#[derive(Debug)]
struct RpnTreeNode<'op> {
    op: RpnOp<'op>,
    children: RpnTreeNodeType,
}
impl<'op> RpnTreeNode<'op> {
    pub fn new(op: RpnOp<'op>, children: RpnTreeNodeType) -> Self {
        Self { op, children }
    }
}
#[derive(Debug)]
enum RpnTreeNodeType {
    Literal,
    Unary(usize),
    Binary { lhs: usize, rhs: usize },
}

fn write_node(nodes: &[RpnTreeNode], id: usize, fmt: &mut Formatter) -> Result<(), fmt::Error> {
    use RpnOp::*;
    use RpnTreeNodeType::*;
    let node = &nodes[id];

    let write_child_node = |id, fmt: &mut Formatter, is_left: bool| {
        let child_node: &RpnTreeNode = &nodes[id];
        let needs_parens = child_node.op.needs_parens(&node.op, is_left);
        if needs_parens {
            write!(fmt, "(")?;
        }
        write_node(nodes, id, fmt)?;
        if needs_parens {
            write!(fmt, ")")?;
        }
        Ok(())
    };

    match node.children {
        // Literals are printed just the same
        Literal => write!(fmt, "{}", node.op),
        // Gulp, these can be a bit funky
        Unary(operand) => match node.op {
            // These two are printed like functions
            HramCheck | RstCheck => {
                write!(fmt, "{}(", node.op)?;
                write_child_node(operand, fmt, true)?;
                write!(fmt, ")")
            }
            // The rest is simply affixed to the node
            _ => {
                if matches!(node.op, Neg) {
                    write!(fmt, "-")?;
                } else {
                    write!(fmt, "{}", node.op)?;
                }
                write_child_node(operand, fmt, true)
            }
        },
        // Fairly uniform
        Binary { lhs, rhs } => {
            write_child_node(lhs, fmt, true)?;
            write!(fmt, " {} ", node.op)?;
            write_child_node(rhs, fmt, false)
        }
    }
}