1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
//! ## Basic usage
//! 
//! ```rust
//! use reusable_memory::ReusableMemory;
//! 
//! let mut memory: ReusableMemory<u8> = ReusableMemory::new();
//! 
//! {
//! 	// The memory can then be borrowed as a different type:
//! 	let mut borrowed_memory = memory.borrow_mut_as::<usize>(std::num::NonZeroUsize::new(3).unwrap());
//! 
//! 	// Now `borrowed_memory` holds a pointer to enough memory to store 3 properly-aligned `usize`s inside the memory allocated in `memory`.
//! 	borrowed_memory.push(1).unwrap();
//! 	borrowed_memory.push(2).unwrap();
//! 	borrowed_memory.push(std::usize::MAX).unwrap();
//! 	// `push` will return an `Err` if the pushed value would not fit into the capacity of the borrowed memory.
//! 
//! 	assert_eq!(borrowed_memory.as_slice(), &[1, 2, std::usize::MAX]);
//! 
//! 	// values can also be `pop`ed or `drain`ed as with `Vec`:
//! 	assert_eq!(borrowed_memory.pop(), Some(std::usize::MAX));
//! 	assert_eq!(borrowed_memory.drain(..).collect::<Vec<usize>>().as_slice(), &[1, 2]);
//! 	assert_eq!(borrowed_memory.pop(), None);
//! }
//! // The borrowed memory is automatically returned when the object is dropped, and the pushed values are dropped as well.
//! 
//! // Now the memory can be reused, even as multiple different types (current limit is 5 because the code is generated by a macro):
//! {
//! 	let (mut borrow_t, mut borrow_u) = memory.borrow_mut_two_as::<usize, u8>(
//! 		[
//! 			std::num::NonZeroUsize::new(1).unwrap(),
//! 			std::num::NonZeroUsize::new(2).unwrap()
//! 		]
//! 	);
//! 
//! 	borrow_t.push(0usize).unwrap();
//! 	
//! 	borrow_u.push(1u8).unwrap();
//! 	borrow_u.push(2u8).unwrap();
//! 
//! 	assert_eq!(borrow_t.as_slice(), &[0usize]);
//! 
//! 	assert_eq!(borrow_u.as_slice(), &[1u8, 2u8]);
//! }
//! ```

mod base;
pub mod borrow;

pub use base::*;

#[cfg(test)]
mod tests {
	use std::num::NonZeroUsize;

	use super::{borrow::*, *};

	/// Tests borrow of `u8` from base of `u8`.
	#[test]
	fn same_type() {
		let mut rm: ReusableMemory<u16> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<u16>(NonZeroUsize::new(3).unwrap());
			borrow.push(1).unwrap();
			borrow.push(std::u16::MAX).unwrap();

			assert_eq!(borrow.as_ptr().align_offset(std::mem::align_of::<u16>()), 0);
			assert_eq!(borrow.len(), 2);
		}
	}

	/// Tests borrow of `i16` from base of `u16`.
	#[test]
	fn same_align_type() {
		let mut rm: ReusableMemory<u16> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<i16>(NonZeroUsize::new(3).unwrap());
			borrow.push(1).unwrap();
			borrow.push(std::i16::MAX).unwrap();

			assert_eq!(borrow.as_ptr().align_offset(std::mem::align_of::<i16>()), 0);
			assert_eq!(borrow.len(), 2);
		}
	}

	/// Tests borrow of `usize` from base of `u8`.
	///
	/// This fails on Miri because it cannot align the pointers (yet?)
	#[test]
	fn different_align() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<usize>(NonZeroUsize::new(3).unwrap());
			borrow.push(1).unwrap();
			borrow.push(std::usize::MAX).unwrap();

			assert_eq!(borrow.as_ptr().align_offset(std::mem::align_of::<usize>()), 0);
			assert_eq!(borrow.len(), 2);
		}
	}

	#[test]
	fn borrow_two_same_type() {
		let mut rm: ReusableMemory<u16> = ReusableMemory::new();
		{
			let (mut borrow_a, mut borrow_b) = rm.borrow_mut_two_as::<u16, i16>([
				NonZeroUsize::new(6).unwrap(),
				NonZeroUsize::new(3).unwrap()
			]);

			borrow_a.push(1).unwrap();
			borrow_a.push(2).unwrap();
			borrow_a.push(std::u16::MAX).unwrap();

			borrow_b.push(-1).unwrap();
			borrow_b.push(-2).unwrap();
			borrow_b.push(std::i16::MIN).unwrap();

			assert_eq!(borrow_a.as_ptr().align_offset(std::mem::align_of::<u16>()), 0);
			assert_eq!(borrow_b.as_ptr().align_offset(std::mem::align_of::<i16>()), 0);

			assert_eq!(borrow_a.as_slice(), &[1, 2, std::u16::MAX]);
			assert_eq!(borrow_b.as_slice(), &[-1, -2, std::i16::MIN]);
		}
	}

	/// Tests borrow of `u64`,`u32` and `u16` from base of `u8`.
	///
	/// This fails on Miri because it cannot align the pointers (yet?)
	#[test]
	fn borrow_three_different_align() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let (mut borrow_u64, mut borrow_u32, mut borrow_u16) = rm
				.borrow_mut_three_as::<u64, u32, u16>([
					NonZeroUsize::new(1).unwrap(),
					NonZeroUsize::new(2).unwrap(),
					NonZeroUsize::new(4).unwrap()
				]);

			borrow_u64.push(1).unwrap();

			borrow_u32.push(1).unwrap();
			borrow_u32.push(2).unwrap();

			borrow_u16.push(1).unwrap();
			borrow_u16.push(2).unwrap();
			borrow_u16.push(3).unwrap();
			borrow_u16.push(4).unwrap();

			assert_eq!(borrow_u64.as_ptr().align_offset(std::mem::align_of::<u64>()), 0);
			assert_eq!(borrow_u32.as_ptr().align_offset(std::mem::align_of::<u32>()), 0);
			assert_eq!(borrow_u16.as_ptr().align_offset(std::mem::align_of::<u16>()), 0);

			assert_eq!(borrow_u64.as_slice(), &[1u64]);
			assert_eq!(borrow_u32.as_slice(), &[1u32, 2u32]);
			assert_eq!(borrow_u16.as_slice(), &[1u16, 2u16, 3u16, 4u16]);
		}
	}

	#[test]
	fn push_iter() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<u8>(NonZeroUsize::new(6).unwrap());
			let iter = (0 .. 5u8).into_iter();

			borrow.push_from_iter(iter).unwrap();
			assert_eq!(borrow.as_slice(), &[0, 1, 2, 3, 4]);
		}
	}

	#[test]
	fn push_iter_fill_up() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<u8>(NonZeroUsize::new(5).unwrap());
			let iter = (0 .. 5u8).into_iter();

			let mut iter = borrow.push_from_iter(iter).unwrap_err();
			assert_eq!(borrow.as_slice(), &[0, 1, 2, 3, 4]);
			assert_eq!(iter.next(), None);
		}
	}

	#[test]
	fn push_iter_fill_up_peekable() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<u8>(NonZeroUsize::new(5).unwrap());
			let iter = (0 .. 5u8).into_iter();

			borrow.push_from_iter_peeking(iter).unwrap();
			assert_eq!(borrow.as_slice(), &[0, 1, 2, 3, 4]);
		}
	}

	#[test]
	fn push_iter_over_capacity() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<u8>(NonZeroUsize::new(4).unwrap());
			let iter = (0 .. 5u8).into_iter();

			let mut iter = borrow.push_from_iter(iter).unwrap_err();
			assert_eq!(borrow.as_slice(), &[0, 1, 2, 3]);
			assert_eq!(iter.next(), Some(4));
		}
	}

	/// Tests that borrow can push from ExactSizeIterator.
	#[test]
	fn push_exact_iter() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<u8>(NonZeroUsize::new(3).unwrap());
			let iter = vec![1, std::u8::MAX].into_iter();

			borrow.push_from_exact_iter(iter).unwrap();
			assert_eq!(borrow.as_ptr().align_offset(std::mem::align_of::<u8>()), 0);
			assert_eq!(borrow.len(), 2);
		}
	}

	/// Tests that pushing from an iterator beyond capacity returns an error.
	#[test]
	fn push_exact_iter_over_capacity() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let capacity = NonZeroUsize::new(1).unwrap();
			let mut borrow = rm.borrow_mut_as::<u8>(capacity);
			let iter = vec![1, std::u8::MAX].into_iter();

			match borrow.push_from_exact_iter(iter.clone()) {
				Err(err_iter) if err_iter.as_slice() == iter.as_slice() => (),
				_ => panic!("Expected Err(iter)")
			}
		}
	}

	#[test]
	fn pop() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let capacity = NonZeroUsize::new(1).unwrap();
			let mut borrow = rm.borrow_mut_as::<u8>(capacity);

			borrow.push(1).unwrap();

			assert_eq!(borrow.pop(), Some(1));
			assert_eq!(borrow.pop(), None);
		}
	}

	#[test]
	fn drain() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<u8>(NonZeroUsize::new(5).unwrap());
			borrow.push_from_exact_iter(0 ..= 4).unwrap();

			{
				let mut drain = borrow.drain(1 ..= 3);
				assert_eq!(drain.next(), Some(1));
				assert_eq!(drain.next_back(), Some(3));
			}

			assert_eq!(borrow.as_slice(), &[0, 4]);
		}
	}

	/// Tests that values are dropped on clear.
	#[test]
	fn clear() {
		static mut DROP_COUNTER: usize = 0;
		struct DropCounter {
			_value: u8
		}
		impl DropCounter {
			pub fn new(value: u8) -> Self {
				unsafe {
					DROP_COUNTER += 1;
				}

				DropCounter { _value: value }
			}
		}
		impl Drop for DropCounter {
			fn drop(&mut self) {
				unsafe {
					DROP_COUNTER -= 1;
				}
			}
		}

		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<DropCounter>(NonZeroUsize::new(2).unwrap());

			borrow.push(DropCounter::new(1)).unwrap();
			borrow.push(DropCounter::new(std::u8::MAX)).unwrap();

			unsafe {
				assert_eq!(DROP_COUNTER, 2);
			}

			borrow.clear();

			unsafe {
				assert_eq!(DROP_COUNTER, 0);
			}
		}
	}

	/// Tests that values are dropped on `Drop`.
	#[test]
	fn drop() {
		static mut DROP_COUNTER: usize = 0;
		struct DropCounter {
			_value: u8
		}
		impl DropCounter {
			pub fn new(value: u8) -> Self {
				unsafe {
					DROP_COUNTER += 1;
				}

				DropCounter { _value: value }
			}
		}
		impl Drop for DropCounter {
			fn drop(&mut self) {
				unsafe {
					DROP_COUNTER -= 1;
				}
			}
		}

		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let mut borrow = rm.borrow_mut_as::<DropCounter>(NonZeroUsize::new(2).unwrap());

			borrow.push(DropCounter::new(1)).unwrap();
			borrow.push(DropCounter::new(std::u8::MAX)).unwrap();

			unsafe {
				assert_eq!(DROP_COUNTER, 2);
			}
		}

		unsafe {
			assert_eq!(DROP_COUNTER, 0);
		}
	}

	/// Tests that pushing beyond capacity returns an error.
	#[test]
	fn not_enough_capacity() {
		let mut rm: ReusableMemory<u8> = ReusableMemory::new();
		{
			let capacity = NonZeroUsize::new(1).unwrap();
			let mut borrow = rm.borrow_mut_as::<u8>(capacity);
			borrow.push(1).unwrap();

			match borrow.push(1) {
				Err(ReusableMemoryBorrowError::NotEnoughCapacity(c)) if c == capacity => (),
				_ => panic!("Expected Err(ReusableMemoryBorrowError::NotEnoughCapacity)")
			}
		}
	}
}