1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
// Licensed under the Apache License, Version 2.0 (the "License"); you may
// not use this file except in compliance with the License. You may obtain
// a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.

mod astar;
mod dag_isomorphism;
mod digraph;
mod dijkstra;
mod dot_utils;
mod generators;
mod graph;
mod iterators;
mod k_shortest_path;
mod max_weight_matching;
mod union;

use std::cmp::{Ordering, Reverse};
use std::collections::{BTreeSet, BinaryHeap};

use hashbrown::{HashMap, HashSet};

use pyo3::create_exception;
use pyo3::exceptions::{PyException, PyValueError};
use pyo3::prelude::*;
use pyo3::types::{PyDict, PyList};
use pyo3::wrap_pyfunction;
use pyo3::wrap_pymodule;
use pyo3::Python;

use petgraph::algo;
use petgraph::graph::NodeIndex;
use petgraph::prelude::*;
use petgraph::visit::{
    Bfs, Data, GraphBase, GraphProp, IntoEdgeReferences, IntoNeighbors,
    IntoNodeIdentifiers, NodeCount, NodeIndexable, Reversed, VisitMap,
    Visitable,
};

use ndarray::prelude::*;
use numpy::IntoPyArray;
use rand::distributions::{Distribution, Uniform};
use rand::prelude::*;
use rand_pcg::Pcg64;
use rayon::prelude::*;

use crate::generators::PyInit_generators;
use crate::iterators::{EdgeList, NodeIndices};

trait NodesRemoved {
    fn nodes_removed(&self) -> bool;
}

fn longest_path(graph: &digraph::PyDiGraph) -> PyResult<Vec<usize>> {
    let dag = &graph.graph;
    let mut path: Vec<usize> = Vec::new();
    let nodes = match algo::toposort(graph, None) {
        Ok(nodes) => nodes,
        Err(_err) => {
            return Err(DAGHasCycle::new_err("Sort encountered a cycle"))
        }
    };
    if nodes.is_empty() {
        return Ok(path);
    }
    let mut dist: HashMap<NodeIndex, (usize, NodeIndex)> = HashMap::new();
    for node in nodes {
        let parents =
            dag.neighbors_directed(node, petgraph::Direction::Incoming);
        let mut us: Vec<(usize, NodeIndex)> = Vec::new();
        for p_node in parents {
            let length = dist[&p_node].0 + 1;
            us.push((length, p_node));
        }
        let maxu: (usize, NodeIndex);
        if !us.is_empty() {
            maxu = *us.iter().max_by_key(|x| x.0).unwrap();
        } else {
            maxu = (0, node);
        };
        dist.insert(node, maxu);
    }
    let first = match dist.keys().max_by_key(|index| dist[index]) {
        Some(first) => first,
        None => {
            return Err(PyException::new_err(
                "Encountered something unexpected",
            ))
        }
    };
    let mut v = *first;
    let mut u: Option<NodeIndex> = None;
    while match u {
        Some(u) => u != v,
        None => true,
    } {
        path.push(v.index());
        u = Some(v);
        v = dist[&v].1;
    }
    path.reverse();
    Ok(path)
}

/// Find the longest path in a DAG
///
/// :param PyDiGraph graph: The graph to find the longest path on. The input
///     object must be a DAG without a cycle.
///
/// :returns: The node indices of the longest path on the DAG
/// :rtype: NodeIndices
///
/// :raises Exception: If an unexpected error occurs or a path can't be found
/// :raises DAGHasCycle: If the input PyDiGraph has a cycle
#[pyfunction]
#[text_signature = "(graph, /)"]
fn dag_longest_path(graph: &digraph::PyDiGraph) -> PyResult<NodeIndices> {
    Ok(NodeIndices {
        nodes: longest_path(graph)?,
    })
}

/// Find the length of the longest path in a DAG
///
/// :param PyDiGraph graph: The graph to find the longest path on. The input
///     object must be a DAG without a cycle.
///
/// :returns: The longest path length on the DAG
/// :rtype: int
///
/// :raises Exception: If an unexpected error occurs or a path can't be found
/// :raises DAGHasCycle: If the input PyDiGraph has a cycle
#[pyfunction]
#[text_signature = "(graph, /)"]
fn dag_longest_path_length(graph: &digraph::PyDiGraph) -> PyResult<usize> {
    let path = longest_path(graph)?;
    if path.is_empty() {
        return Ok(0);
    }
    let path_length: usize = path.len() - 1;
    Ok(path_length)
}

/// Find the number of weakly connected components in a DAG.
///
/// :param PyDiGraph graph: The graph to find the number of weakly connected
///     components on
///
/// :returns: The number of weakly connected components in the DAG
/// :rtype: int
#[pyfunction]
#[text_signature = "(graph, /)"]
fn number_weakly_connected_components(graph: &digraph::PyDiGraph) -> usize {
    algo::connected_components(graph)
}

/// Find the weakly connected components in a directed graph
///
/// :param PyDiGraph graph: The graph to find the weakly connected components
///     in
///
/// :returns: A list of sets where each set it a weakly connected component of
///     the graph
/// :rtype: list
#[pyfunction]
#[text_signature = "(graph, /)"]
pub fn weakly_connected_components(
    graph: &digraph::PyDiGraph,
) -> Vec<BTreeSet<usize>> {
    let mut seen: HashSet<NodeIndex> =
        HashSet::with_capacity(graph.node_count());
    let mut out_vec: Vec<BTreeSet<usize>> = Vec::new();
    for node in graph.graph.node_indices() {
        if !seen.contains(&node) {
            // BFS node generator
            let mut component_set: BTreeSet<usize> = BTreeSet::new();
            let mut bfs_seen: HashSet<NodeIndex> = HashSet::new();
            let mut next_level: HashSet<NodeIndex> = HashSet::new();
            next_level.insert(node);
            while !next_level.is_empty() {
                let this_level = next_level;
                next_level = HashSet::new();
                for bfs_node in this_level {
                    if !bfs_seen.contains(&bfs_node) {
                        component_set.insert(bfs_node.index());
                        bfs_seen.insert(bfs_node);
                        for neighbor in
                            graph.graph.neighbors_undirected(bfs_node)
                        {
                            next_level.insert(neighbor);
                        }
                    }
                }
            }
            out_vec.push(component_set);
            seen.extend(bfs_seen);
        }
    }
    out_vec
}

/// Check if the graph is weakly connected
///
/// :param PyDiGraph graph: The graph to check if it is weakly connected
///
/// :returns: Whether the graph is weakly connected or not
/// :rtype: bool
///
/// :raises NullGraph: If an empty graph is passed in
#[pyfunction]
#[text_signature = "(graph, /)"]
pub fn is_weakly_connected(graph: &digraph::PyDiGraph) -> PyResult<bool> {
    if graph.graph.node_count() == 0 {
        return Err(NullGraph::new_err("Invalid operation on a NullGraph"));
    }
    Ok(weakly_connected_components(graph)[0].len() == graph.graph.node_count())
}

/// Check that the PyDiGraph or PyDAG doesn't have a cycle
///
/// :param PyDiGraph graph: The graph to check for cycles
///
/// :returns: ``True`` if there are no cycles in the input graph, ``False``
///     if there are cycles
/// :rtype: bool
#[pyfunction]
#[text_signature = "(graph, /)"]
fn is_directed_acyclic_graph(graph: &digraph::PyDiGraph) -> bool {
    match algo::toposort(graph, None) {
        Ok(_nodes) => true,
        Err(_err) => false,
    }
}

/// Determine if 2 graphs are structurally isomorphic
///
/// This checks if 2 graphs are structurally isomorphic (it doesn't match
/// the contents of the nodes or edges on the graphs).
///
/// :param PyDiGraph first: The first graph to compare
/// :param PyDiGraph second: The second graph to compare
///
/// :returns: ``True`` if the 2 graphs are structurally isomorphic, ``False``
///     if they are not
/// :rtype: bool
#[pyfunction]
#[text_signature = "(first, second, /)"]
fn is_isomorphic(
    first: &digraph::PyDiGraph,
    second: &digraph::PyDiGraph,
) -> PyResult<bool> {
    let res = dag_isomorphism::is_isomorphic(first, second)?;
    Ok(res)
}

/// Return a new PyDiGraph by forming a union from two input PyDiGraph objects
///
/// The algorithm in this function operates in three phases:
///
///  1. Add all the nodes from  ``second`` into ``first``. operates in O(n),
///     with n being number of nodes in `b`.
///  2. Merge nodes from ``second`` over ``first`` given that:
///
///     - The ``merge_nodes`` is ``True``. operates in O(n^2), with n being the
///       number of nodes in ``second``.
///     - The respective node in ``second`` and ``first`` share the same
///       weight/data payload.
///
///  3. Adds all the edges from ``second`` to ``first``. If the ``merge_edges``
///     parameter is ``True`` and the respective edge in ``second`` and
///     first`` share the same weight/data payload they will be merged
///     together.
///
///  :param PyDiGraph first: The first directed graph object
///  :param PyDiGraph second: The second directed graph object
///  :param bool merge_nodes: If set to ``True`` nodes will be merged between
///     ``second`` and ``first`` if the weights are equal.
///  :param bool merge_edges: If set to ``True`` edges will be merged between
///     ``second`` and ``first`` if the weights are equal.
///
///  :returns: A new PyDiGraph object that is the union of ``second`` and
///     ``first``. It's worth noting the weight/data payload objects are
///     passed by reference from ``first`` and ``second`` to this new object.
///  :rtype: PyDiGraph
#[pyfunction]
#[text_signature = "(first, second, merge_nodes, merge_edges, /)"]
fn digraph_union(
    py: Python,
    first: &digraph::PyDiGraph,
    second: &digraph::PyDiGraph,
    merge_nodes: bool,
    merge_edges: bool,
) -> PyResult<digraph::PyDiGraph> {
    let res =
        union::digraph_union(py, first, second, merge_nodes, merge_edges)?;
    Ok(res)
}

/// Determine if 2 DAGs are isomorphic
///
/// This checks if 2 graphs are isomorphic both structurally and also
/// comparing the node data using the provided matcher function. The matcher
/// function takes in 2 node data objects and will compare them. A simple
/// example that checks if they're just equal would be::
///
///     graph_a = retworkx.PyDAG()
///     graph_b = retworkx.PyDAG()
///     retworkx.is_isomorphic_node_match(graph_a, graph_b,
///                                       lambda x, y: x == y)
///
/// :param PyDiGraph first: The first graph to compare
/// :param PyDiGraph second: The second graph to compare
/// :param callable matcher: A python callable object that takes 2 positional
///     one for each node data object. If the return of this
///     function evaluates to True then the nodes passed to it are vieded as
///     matching.
///
/// :returns: ``True`` if the 2 graphs are isomorphic ``False`` if they are
///     not.
/// :rtype: bool
#[pyfunction]
#[text_signature = "(first, second, matcher, /)"]
fn is_isomorphic_node_match(
    py: Python,
    first: &digraph::PyDiGraph,
    second: &digraph::PyDiGraph,
    matcher: PyObject,
) -> PyResult<bool> {
    let compare_nodes = |a: &PyObject, b: &PyObject| -> PyResult<bool> {
        let res = matcher.call1(py, (a, b))?;
        Ok(res.is_true(py).unwrap())
    };

    #[allow(clippy::unnecessary_wraps)]
    fn compare_edges(_a: &PyObject, _b: &PyObject) -> PyResult<bool> {
        Ok(true)
    }
    let res = dag_isomorphism::is_isomorphic_matching(
        py,
        first,
        second,
        compare_nodes,
        compare_edges,
    )?;
    Ok(res)
}

/// Return the topological sort of node indexes from the provided graph
///
/// :param PyDiGraph graph: The DAG to get the topological sort on
///
/// :returns: A list of node indices topologically sorted.
/// :rtype: NodeIndices
///
/// :raises DAGHasCycle: if a cycle is encountered while sorting the graph
#[pyfunction]
#[text_signature = "(graph, /)"]
fn topological_sort(graph: &digraph::PyDiGraph) -> PyResult<NodeIndices> {
    let nodes = match algo::toposort(graph, None) {
        Ok(nodes) => nodes,
        Err(_err) => {
            return Err(DAGHasCycle::new_err("Sort encountered a cycle"))
        }
    };
    Ok(NodeIndices {
        nodes: nodes.iter().map(|node| node.index()).collect(),
    })
}

fn dfs_edges<G>(
    graph: G,
    source: Option<usize>,
    edge_count: usize,
) -> Vec<(usize, usize)>
where
    G: GraphBase<NodeId = NodeIndex>
        + IntoNodeIdentifiers
        + NodeIndexable
        + IntoNeighbors
        + NodeCount
        + Visitable,
    <G as Visitable>::Map: VisitMap<NodeIndex>,
{
    let nodes: Vec<NodeIndex> = match source {
        Some(start) => vec![NodeIndex::new(start)],
        None => graph
            .node_identifiers()
            .map(|ind| NodeIndex::new(graph.to_index(ind)))
            .collect(),
    };
    let node_count = graph.node_count();
    let mut visited: HashSet<NodeIndex> = HashSet::with_capacity(node_count);
    let mut out_vec: Vec<(usize, usize)> = Vec::with_capacity(edge_count);
    for start in nodes {
        if visited.contains(&start) {
            continue;
        }
        visited.insert(start);
        let mut children: Vec<NodeIndex> = graph.neighbors(start).collect();
        children.reverse();
        let mut stack: Vec<(NodeIndex, Vec<NodeIndex>)> =
            vec![(start, children)];
        // Used to track the last position in children vec across iterations
        let mut index_map: HashMap<NodeIndex, usize> =
            HashMap::with_capacity(node_count);
        index_map.insert(start, 0);
        while !stack.is_empty() {
            let temp_parent = stack.last().unwrap();
            let parent = temp_parent.0;
            let children = temp_parent.1.clone();
            let count = *index_map.get(&parent).unwrap();
            let mut found = false;
            let mut index = count;
            for child in &children[index..] {
                index += 1;
                if !visited.contains(&child) {
                    out_vec.push((parent.index(), child.index()));
                    visited.insert(*child);
                    let mut grandchildren: Vec<NodeIndex> =
                        graph.neighbors(*child).collect();
                    grandchildren.reverse();
                    stack.push((*child, grandchildren));
                    index_map.insert(*child, 0);
                    *index_map.get_mut(&parent).unwrap() = index;
                    found = true;
                    break;
                }
            }
            if !found || children.is_empty() {
                stack.pop();
            }
        }
    }
    out_vec
}

/// Get edge list in depth first order
///
/// :param PyDiGraph graph: The graph to get the DFS edge list from
/// :param int source: An optional node index to use as the starting node
///     for the depth-first search. The edge list will only return edges in
///     the components reachable from this index. If this is not specified
///     then a source will be chosen arbitrarly and repeated until all
///     components of the graph are searched.
///
/// :returns: A list of edges as a tuple of the form ``(source, target)`` in
///     depth-first order
/// :rtype: EdgeList
#[pyfunction]
#[text_signature = "(graph, /, source=None)"]
fn digraph_dfs_edges(
    graph: &digraph::PyDiGraph,
    source: Option<usize>,
) -> EdgeList {
    EdgeList {
        edges: dfs_edges(graph, source, graph.graph.edge_count()),
    }
}

/// Get edge list in depth first order
///
/// :param PyGraph graph: The graph to get the DFS edge list from
/// :param int source: An optional node index to use as the starting node
///     for the depth-first search. The edge list will only return edges in
///     the components reachable from this index. If this is not specified
///     then a source will be chosen arbitrarly and repeated until all
///     components of the graph are searched.
///
/// :returns: A list of edges as a tuple of the form ``(source, target)`` in
///     depth-first order
/// :rtype: EdgeList
#[pyfunction]
#[text_signature = "(graph, /, source=None)"]
fn graph_dfs_edges(graph: &graph::PyGraph, source: Option<usize>) -> EdgeList {
    EdgeList {
        edges: dfs_edges(graph, source, graph.graph.edge_count()),
    }
}

/// Return successors in a breadth-first-search from a source node.
///
/// The return format is ``[(Parent Node, [Children Nodes])]`` in a bfs order
/// from the source node provided.
///
/// :param PyDiGraph graph: The DAG to get the bfs_successors from
/// :param int node: The index of the dag node to get the bfs successors for
///
/// :returns: A list of nodes's data and their children in bfs order. The
///     BFSSuccessors class that is returned is a custom container class that
///     implements the sequence protocol. This can be used as a python list
///     with index based access.
/// :rtype: BFSSuccessors
#[pyfunction]
#[text_signature = "(graph, node, /)"]
fn bfs_successors(
    py: Python,
    graph: &digraph::PyDiGraph,
    node: usize,
) -> iterators::BFSSuccessors {
    let index = NodeIndex::new(node);
    let mut bfs = Bfs::new(graph, index);
    let mut out_list: Vec<(PyObject, Vec<PyObject>)> =
        Vec::with_capacity(graph.node_count());
    while let Some(nx) = bfs.next(graph) {
        let children = graph
            .graph
            .neighbors_directed(nx, petgraph::Direction::Outgoing);
        let mut succesors: Vec<PyObject> = Vec::new();
        for succ in children {
            succesors
                .push(graph.graph.node_weight(succ).unwrap().clone_ref(py));
        }
        if !succesors.is_empty() {
            out_list.push((
                graph.graph.node_weight(nx).unwrap().clone_ref(py),
                succesors,
            ));
        }
    }
    iterators::BFSSuccessors {
        bfs_successors: out_list,
    }
}

/// Return the ancestors of a node in a graph.
///
/// This differs from :meth:`PyDiGraph.predecessors` method  in that
/// ``predecessors`` returns only nodes with a direct edge into the provided
/// node. While this function returns all nodes that have a path into the
/// provided node.
///
/// :param PyDiGraph graph: The graph to get the descendants from
/// :param int node: The index of the graph node to get the ancestors for
///
/// :returns: A list of node indexes of ancestors of provided node.
/// :rtype: list
#[pyfunction]
#[text_signature = "(graph, node, /)"]
fn ancestors(graph: &digraph::PyDiGraph, node: usize) -> HashSet<usize> {
    let index = NodeIndex::new(node);
    let mut out_set: HashSet<usize> = HashSet::new();
    let reverse_graph = Reversed(graph);
    let res = algo::dijkstra(reverse_graph, index, None, |_| 1);
    for n in res.keys() {
        let n_int = n.index();
        out_set.insert(n_int);
    }
    out_set.remove(&node);
    out_set
}

/// Return the descendants of a node in a graph.
///
/// This differs from :meth:`PyDiGraph.successors` method in that
/// ``successors``` returns only nodes with a direct edge out of the provided
/// node. While this function returns all nodes that have a path from the
/// provided node.
///
/// :param PyDiGraph graph: The graph to get the descendants from
/// :param int node: The index of the graph node to get the descendants for
///
/// :returns: A list of node indexes of descendants of provided node.
/// :rtype: list
#[pyfunction]
#[text_signature = "(graph, node, /)"]
fn descendants(graph: &digraph::PyDiGraph, node: usize) -> HashSet<usize> {
    let index = NodeIndex::new(node);
    let mut out_set: HashSet<usize> = HashSet::new();
    let res = algo::dijkstra(graph, index, None, |_| 1);
    for n in res.keys() {
        let n_int = n.index();
        out_set.insert(n_int);
    }
    out_set.remove(&node);
    out_set
}

/// Get the lexicographical topological sorted nodes from the provided DAG
///  
/// This function returns a list of nodes data in a graph lexicographically
/// topologically sorted using the provided key function.
///
/// :param PyDiGraph dag: The DAG to get the topological sorted nodes from
/// :param callable key: key is a python function or other callable that
///     gets passed a single argument the node data from the graph and is
///     expected to return a string which will be used for sorting.
///
/// :returns: A list of node's data lexicographically topologically sorted.
/// :rtype: list
#[pyfunction]
#[text_signature = "(dag, key, /)"]
fn lexicographical_topological_sort(
    py: Python,
    dag: &digraph::PyDiGraph,
    key: PyObject,
) -> PyResult<PyObject> {
    let key_callable = |a: &PyObject| -> PyResult<PyObject> {
        let res = key.call1(py, (a,))?;
        Ok(res.to_object(py))
    };
    // HashMap of node_index indegree
    let node_count = dag.node_count();
    let mut in_degree_map: HashMap<NodeIndex, usize> =
        HashMap::with_capacity(node_count);
    for node in dag.graph.node_indices() {
        in_degree_map.insert(node, dag.in_degree(node.index()));
    }

    #[derive(Clone, Eq, PartialEq)]
    struct State {
        key: String,
        node: NodeIndex,
    }

    impl Ord for State {
        fn cmp(&self, other: &State) -> Ordering {
            // Notice that the we flip the ordering on costs.
            // In case of a tie we compare positions - this step is necessary
            // to make implementations of `PartialEq` and `Ord` consistent.
            other
                .key
                .cmp(&self.key)
                .then_with(|| other.node.index().cmp(&self.node.index()))
        }
    }

    // `PartialOrd` needs to be implemented as well.
    impl PartialOrd for State {
        fn partial_cmp(&self, other: &State) -> Option<Ordering> {
            Some(self.cmp(other))
        }
    }
    let mut zero_indegree = BinaryHeap::with_capacity(node_count);
    for (node, degree) in in_degree_map.iter() {
        if *degree == 0 {
            let map_key_raw = key_callable(&dag.graph[*node])?;
            let map_key: String = map_key_raw.extract(py)?;
            zero_indegree.push(State {
                key: map_key,
                node: *node,
            });
        }
    }
    let mut out_list: Vec<&PyObject> = Vec::with_capacity(node_count);
    let dir = petgraph::Direction::Outgoing;
    while let Some(State { node, .. }) = zero_indegree.pop() {
        let neighbors = dag.graph.neighbors_directed(node, dir);
        for child in neighbors {
            let child_degree = in_degree_map.get_mut(&child).unwrap();
            *child_degree -= 1;
            if *child_degree == 0 {
                let map_key_raw = key_callable(&dag.graph[child])?;
                let map_key: String = map_key_raw.extract(py)?;
                zero_indegree.push(State {
                    key: map_key,
                    node: child,
                });
                in_degree_map.remove(&child);
            }
        }
        out_list.push(&dag.graph[node])
    }
    Ok(PyList::new(py, out_list).into())
}

/// Color a PyGraph using a largest_first strategy greedy graph coloring.
///
/// :param PyGraph: The input PyGraph object to color
///
/// :returns: A dictionary where keys are node indices and the value is
///     the color
/// :rtype: dict
#[pyfunction]
#[text_signature = "(graph, /)"]
fn graph_greedy_color(
    py: Python,
    graph: &graph::PyGraph,
) -> PyResult<PyObject> {
    let mut colors: HashMap<usize, usize> = HashMap::new();
    let mut node_vec: Vec<NodeIndex> = graph.graph.node_indices().collect();
    let mut sort_map: HashMap<NodeIndex, usize> =
        HashMap::with_capacity(graph.node_count());
    for k in node_vec.iter() {
        sort_map.insert(*k, graph.graph.edges(*k).count());
    }
    node_vec.par_sort_by_key(|k| Reverse(sort_map.get(k)));
    for u_index in node_vec {
        let mut neighbor_colors: HashSet<usize> = HashSet::new();
        for edge in graph.graph.edges(u_index) {
            let target = edge.target().index();
            let existing_color = match colors.get(&target) {
                Some(node) => node,
                None => continue,
            };
            neighbor_colors.insert(*existing_color);
        }
        let mut count: usize = 0;
        loop {
            if !neighbor_colors.contains(&count) {
                break;
            }
            count += 1;
        }
        colors.insert(u_index.index(), count);
    }
    let out_dict = PyDict::new(py);
    for (index, color) in colors {
        out_dict.set_item(index, color)?;
    }
    Ok(out_dict.into())
}

/// Compute the length of the kth shortest path
///
/// Computes the lengths of the kth shortest path from ``start`` to every
/// reachable node.
///
/// Computes in :math:`O(k * (|E| + |V|*log(|V|)))` time (average).
///
/// :param PyGraph graph: The graph to find the shortest paths in
/// :param int start: The node index to find the shortest paths from
/// :param int k: The kth shortest path to find the lengths of
/// :param edge_cost: A python callable that will receive an edge payload and
///     return a float for the cost of that eedge
/// :param int goal: An optional goal node index, if specified the output
///     dictionary
///
/// :returns: A dict of lengths where the key is the destination node index and
///     the value is the length of the path.
/// :rtype: dict
#[pyfunction]
#[text_signature = "(graph, start, k, edge_cost, /, goal=None)"]
fn digraph_k_shortest_path_lengths(
    py: Python,
    graph: &digraph::PyDiGraph,
    start: usize,
    k: usize,
    edge_cost: PyObject,
    goal: Option<usize>,
) -> PyResult<PyObject> {
    let out_goal = match goal {
        Some(g) => Some(NodeIndex::new(g)),
        None => None,
    };
    let edge_cost_callable = |edge: &PyObject| -> PyResult<f64> {
        let res = edge_cost.call1(py, (edge,))?;
        res.extract(py)
    };

    let out_map = k_shortest_path::k_shortest_path(
        graph,
        NodeIndex::new(start),
        out_goal,
        k,
        edge_cost_callable,
    )?;
    let out_dict = PyDict::new(py);
    for (index, length) in out_map {
        if (out_goal.is_some() && out_goal.unwrap() == index)
            || out_goal.is_none()
        {
            out_dict.set_item(index.index(), length)?;
        }
    }
    Ok(out_dict.into())
}

/// Compute the length of the kth shortest path
///
/// Computes the lengths of the kth shortest path from ``start`` to every
/// reachable node.
///
/// Computes in :math:`O(k * (|E| + |V|*log(|V|)))` time (average).
///
/// :param PyGraph graph: The graph to find the shortest paths in
/// :param int start: The node index to find the shortest paths from
/// :param int k: The kth shortest path to find the lengths of
/// :param edge_cost: A python callable that will receive an edge payload and
///     return a float for the cost of that eedge
/// :param int goal: An optional goal node index, if specified the output
///     dictionary
///
/// :returns: A dict of lengths where the key is the destination node index and
///     the value is the length of the path.
/// :rtype: dict
#[pyfunction]
#[text_signature = "(graph, start, k, edge_cost, /, goal=None)"]
fn graph_k_shortest_path_lengths(
    py: Python,
    graph: &graph::PyGraph,
    start: usize,
    k: usize,
    edge_cost: PyObject,
    goal: Option<usize>,
) -> PyResult<PyObject> {
    let out_goal = match goal {
        Some(g) => Some(NodeIndex::new(g)),
        None => None,
    };
    let edge_cost_callable = |edge: &PyObject| -> PyResult<f64> {
        let res = edge_cost.call1(py, (edge,))?;
        res.extract(py)
    };

    let out_map = k_shortest_path::k_shortest_path(
        graph,
        NodeIndex::new(start),
        out_goal,
        k,
        edge_cost_callable,
    )?;
    let out_dict = PyDict::new(py);
    for (index, length) in out_map {
        if (out_goal.is_some() && out_goal.unwrap() == index)
            || out_goal.is_none()
        {
            out_dict.set_item(index.index(), length)?;
        }
    }
    Ok(out_dict.into())
}
/// Return the shortest path lengths between ever pair of nodes that has a
/// path connecting them
///
/// The runtime is :math:`O(|N|^3 + |E|)` where :math:`|N|` is the number
/// of nodes and :math:`|E|` is the number of edges.
///
/// This is done with the Floyd Warshall algorithm:
///      
/// 1. Process all edges by setting the distance from the parent to
///    the child equal to the edge weight.
/// 2. Iterate through every pair of nodes (source, target) and an additional
///    itermediary node (w). If the distance from source :math:`\rightarrow` w
///    :math:`\rightarrow` target is less than the distance from source
///    :math:`\rightarrow` target, update the source :math:`\rightarrow` target
///    distance (to pass through w).
///
/// The return format is ``{Source Node: {Target Node: Distance}}``.
///
/// .. note::
///
///     Paths that do not exist are simply not found in the return dictionary,
///     rather than setting the distance to infinity, or -1.
///
/// .. note::
///
///     Edge weights are restricted to 1 in the current implementation.
///
/// :param PyDigraph graph: The DiGraph to get all shortest paths from
///
/// :returns: A dictionary of shortest paths
/// :rtype: dict
#[pyfunction]
#[text_signature = "(dag, /)"]
fn floyd_warshall(py: Python, dag: &digraph::PyDiGraph) -> PyResult<PyObject> {
    let mut dist: HashMap<(usize, usize), usize> =
        HashMap::with_capacity(dag.node_count());
    for node in dag.graph.node_indices() {
        // Distance from a node to itself is zero
        dist.insert((node.index(), node.index()), 0);
    }
    for edge in dag.graph.edge_indices() {
        // Distance between nodes that share an edge is 1
        let source_target = dag.graph.edge_endpoints(edge).unwrap();
        let u = source_target.0.index();
        let v = source_target.1.index();
        // Update dist only if the key hasn't been set to 0 already
        // (i.e. in case edge is a self edge). Assumes edge weight = 1.
        dist.entry((u, v)).or_insert(1);
    }
    // The shortest distance between any pair of nodes u, v is the min of the
    // distance tracked so far from u->v and the distance from u to v thorough
    // another node w, for any w.
    for w in dag.graph.node_indices() {
        for u in dag.graph.node_indices() {
            for v in dag.graph.node_indices() {
                let u_v_dist = match dist.get(&(u.index(), v.index())) {
                    Some(u_v_dist) => *u_v_dist,
                    None => std::usize::MAX,
                };
                let u_w_dist = match dist.get(&(u.index(), w.index())) {
                    Some(u_w_dist) => *u_w_dist,
                    None => std::usize::MAX,
                };
                let w_v_dist = match dist.get(&(w.index(), v.index())) {
                    Some(w_v_dist) => *w_v_dist,
                    None => std::usize::MAX,
                };
                if u_w_dist == std::usize::MAX || w_v_dist == std::usize::MAX {
                    // Avoid overflow!
                    continue;
                }
                if u_v_dist > u_w_dist + w_v_dist {
                    dist.insert((u.index(), v.index()), u_w_dist + w_v_dist);
                }
            }
        }
    }

    // Some re-formatting for Python: Dict[int, Dict[int, int]]
    let out_dict = PyDict::new(py);
    for (nodes, distance) in dist {
        let u_index = nodes.0;
        let v_index = nodes.1;
        if out_dict.contains(u_index)? {
            let u_dict =
                out_dict.get_item(u_index).unwrap().downcast::<PyDict>()?;
            u_dict.set_item(v_index, distance)?;
            out_dict.set_item(u_index, u_dict)?;
        } else {
            let u_dict = PyDict::new(py);
            u_dict.set_item(v_index, distance)?;
            out_dict.set_item(u_index, u_dict)?;
        }
    }
    Ok(out_dict.into())
}

fn get_edge_iter_with_weights<G>(
    graph: G,
) -> impl Iterator<Item = (usize, usize, PyObject)>
where
    G: GraphBase
        + IntoEdgeReferences
        + IntoNodeIdentifiers
        + NodeIndexable
        + NodeCount
        + GraphProp
        + NodesRemoved,
    G: Data<NodeWeight = PyObject, EdgeWeight = PyObject>,
{
    let node_map: Option<HashMap<NodeIndex, usize>>;
    if graph.nodes_removed() {
        let mut node_hash_map: HashMap<NodeIndex, usize> =
            HashMap::with_capacity(graph.node_count());
        for (count, node) in graph.node_identifiers().enumerate() {
            let index = NodeIndex::new(graph.to_index(node));
            node_hash_map.insert(index, count);
        }
        node_map = Some(node_hash_map);
    } else {
        node_map = None;
    }

    graph.edge_references().map(move |edge| {
        let i: usize;
        let j: usize;
        match &node_map {
            Some(map) => {
                let source_index =
                    NodeIndex::new(graph.to_index(edge.source()));
                let target_index =
                    NodeIndex::new(graph.to_index(edge.target()));
                i = *map.get(&source_index).unwrap();
                j = *map.get(&target_index).unwrap();
            }
            None => {
                i = graph.to_index(edge.source());
                j = graph.to_index(edge.target());
            }
        }
        (i, j, edge.weight().clone())
    })
}

/// Find all-pairs shortest path lengths using Floyd's algorithm
///
/// Floyd's algorithm is used for finding shortest paths in dense graphs
/// or graphs with negative weights (where Dijkstra's algorithm fails).
///
/// :param PyGraph graph: The graph to run Floyd's algorithm on
/// :param weight_fn: A callable object (function, lambda, etc) which
///     will be passed the edge object and expected to return a ``float``. This
///     tells retworkx/rust how to extract a numerical weight as a ``float``
///     for edge object. Some simple examples are::
///
///         graph_floyd_warshall_numpy(graph, weight_fn: lambda x: 1)
///
///     to return a weight of 1 for all edges. Also::
///
///         graph_floyd_warshall_numpy(graph, weight_fn: lambda x: float(x))
///
///     to cast the edge object as a float as the weight.
///
/// :returns: A matrix of shortest path distances between nodes. If there is no
///     path between two nodes then the corresponding matrix entry will be
///     ``np.inf``.
/// :rtype: numpy.ndarray
#[pyfunction(default_weight = "1.0")]
#[text_signature = "(graph, /, weight_fn=None, default_weight=1.0)"]
fn graph_floyd_warshall_numpy(
    py: Python,
    graph: &graph::PyGraph,
    weight_fn: Option<PyObject>,
    default_weight: f64,
) -> PyResult<PyObject> {
    let n = graph.node_count();
    // Allocate empty matrix
    let mut mat = Array2::<f64>::from_elem((n, n), std::f64::INFINITY);

    // Build adjacency matrix
    for (i, j, weight) in get_edge_iter_with_weights(graph) {
        let edge_weight =
            weight_callable(py, &weight_fn, &weight, default_weight)?;
        mat[[i, j]] = mat[[i, j]].min(edge_weight);
        mat[[j, i]] = mat[[j, i]].min(edge_weight);
    }

    // 0 out the diagonal
    for x in mat.diag_mut() {
        *x = 0.0;
    }
    // Perform the Floyd-Warshall algorithm.
    // In each loop, this finds the shortest path from point i
    // to point j using intermediate nodes 0..k
    for k in 0..n {
        for i in 0..n {
            for j in 0..n {
                let d_ijk = mat[[i, k]] + mat[[k, j]];
                if d_ijk < mat[[i, j]] {
                    mat[[i, j]] = d_ijk;
                }
            }
        }
    }
    Ok(mat.into_pyarray(py).into())
}

/// Find all-pairs shortest path lengths using Floyd's algorithm
///
/// Floyd's algorithm is used for finding shortest paths in dense graphs
/// or graphs with negative weights (where Dijkstra's algorithm fails).
///
/// :param PyDiGraph graph: The directed graph to run Floyd's algorithm on
/// :param weight_fn: A callable object (function, lambda, etc) which
///     will be passed the edge object and expected to return a ``float``. This
///     tells retworkx/rust how to extract a numerical weight as a ``float``
///     for edge object. Some simple examples are::
///
///         graph_floyd_warshall_numpy(graph, weight_fn: lambda x: 1)
///
///     to return a weight of 1 for all edges. Also::
///
///         graph_floyd_warshall_numpy(graph, weight_fn: lambda x: float(x))
///
///     to cast the edge object as a float as the weight.
/// :param as_undirected: If set to true each directed edge will be treated as
///     bidirectional/undirected.
///
/// :returns: A matrix of shortest path distances between nodes. If there is no
///     path between two nodes then the corresponding matrix entry will be
///     ``np.inf``.
/// :rtype: numpy.ndarray
#[pyfunction(as_undirected = "false", default_weight = "1.0")]
#[text_signature = "(graph, /, weight_fn=None as_undirected=False, default_weight=1.0)"]
fn digraph_floyd_warshall_numpy(
    py: Python,
    graph: &digraph::PyDiGraph,
    weight_fn: Option<PyObject>,
    as_undirected: bool,
    default_weight: f64,
) -> PyResult<PyObject> {
    let n = graph.node_count();

    // Allocate empty matrix
    let mut mat = Array2::<f64>::from_elem((n, n), std::f64::INFINITY);

    // Build adjacency matrix
    for (i, j, weight) in get_edge_iter_with_weights(graph) {
        let edge_weight =
            weight_callable(py, &weight_fn, &weight, default_weight)?;
        mat[[i, j]] = mat[[i, j]].min(edge_weight);
        if as_undirected {
            mat[[j, i]] = mat[[j, i]].min(edge_weight);
        }
    }
    // 0 out the diagonal
    for x in mat.diag_mut() {
        *x = 0.0;
    }
    // Perform the Floyd-Warshall algorithm.
    // In each loop, this finds the shortest path from point i
    // to point j using intermediate nodes 0..k
    for k in 0..n {
        for i in 0..n {
            for j in 0..n {
                let d_ijk = mat[[i, k]] + mat[[k, j]];
                if d_ijk < mat[[i, j]] {
                    mat[[i, j]] = d_ijk;
                }
            }
        }
    }
    Ok(mat.into_pyarray(py).into())
}

/// Collect runs that match a filter function
///
/// A run is a path of nodes where there is only a single successor and all
/// nodes in the path match the given condition. Each node in the graph can
/// appear in only a single run.
///
/// :param PyDiGraph graph: The graph to find runs in
/// :param filter_fn: The filter function to use for matching nodes. It takes
///     in one argument, the node data payload/weight object, and will return a
///     boolean whether the node matches the conditions or not. If it returns
///     ``False`` it will skip that node.
///
/// :returns: a list of runs, where each run is a list of node data
///     payload/weight for the nodes in the run
/// :rtype: list
#[pyfunction]
#[text_signature = "(graph, filter)"]
fn collect_runs(
    py: Python,
    graph: &digraph::PyDiGraph,
    filter_fn: PyObject,
) -> PyResult<Vec<Vec<PyObject>>> {
    let mut out_list: Vec<Vec<PyObject>> = Vec::new();
    let mut seen: HashSet<NodeIndex> =
        HashSet::with_capacity(graph.node_count());

    let filter_node = |node: &PyObject| -> PyResult<bool> {
        let res = filter_fn.call1(py, (node,))?;
        res.extract(py)
    };

    let nodes = match algo::toposort(graph, None) {
        Ok(nodes) => nodes,
        Err(_err) => {
            return Err(DAGHasCycle::new_err("Sort encountered a cycle"))
        }
    };
    for node in nodes {
        if !filter_node(&graph.graph[node])? || seen.contains(&node) {
            continue;
        }
        seen.insert(node);
        let mut group: Vec<PyObject> = vec![graph.graph[node].clone_ref(py)];
        let mut successors: Vec<NodeIndex> = graph
            .graph
            .neighbors_directed(node, petgraph::Direction::Outgoing)
            .collect();
        successors.dedup();

        while successors.len() == 1
            && filter_node(&graph.graph[successors[0]])?
            && !seen.contains(&successors[0])
        {
            group.push(graph.graph[successors[0]].clone_ref(py));
            seen.insert(successors[0]);
            successors = graph
                .graph
                .neighbors_directed(
                    successors[0],
                    petgraph::Direction::Outgoing,
                )
                .collect();
            successors.dedup();
        }
        if !group.is_empty() {
            out_list.push(group);
        }
    }
    Ok(out_list)
}

/// Return a list of layers
///  
/// A layer is a subgraph whose nodes are disjoint, i.e.,
/// a layer has depth 1. The layers are constructed using a greedy algorithm.
///
/// :param PyDiGraph graph: The DAG to get the layers from
/// :param list first_layer: A list of node ids for the first layer. This
///     will be the first layer in the output
///
/// :returns: A list of layers, each layer is a list of node data
/// :rtype: list
///
/// :raises InvalidNode: If a node index in ``first_layer`` is not in the graph
#[pyfunction]
#[text_signature = "(dag, first_layer, /)"]
fn layers(
    py: Python,
    dag: &digraph::PyDiGraph,
    first_layer: Vec<usize>,
) -> PyResult<PyObject> {
    let mut output: Vec<Vec<&PyObject>> = Vec::new();
    // Convert usize to NodeIndex
    let mut first_layer_index: Vec<NodeIndex> = Vec::new();
    for index in first_layer {
        first_layer_index.push(NodeIndex::new(index));
    }

    let mut cur_layer = first_layer_index;
    let mut next_layer: Vec<NodeIndex> = Vec::new();
    let mut predecessor_count: HashMap<NodeIndex, usize> = HashMap::new();

    let mut layer_node_data: Vec<&PyObject> = Vec::new();
    for layer_node in &cur_layer {
        let node_data = match dag.graph.node_weight(*layer_node) {
            Some(data) => data,
            None => {
                return Err(InvalidNode::new_err(format!(
                    "An index input in 'first_layer' {} is not a valid node index in the graph",
                    layer_node.index()),
                ))
            }
        };
        layer_node_data.push(node_data);
    }
    output.push(layer_node_data);

    // Iterate until there are no more
    while !cur_layer.is_empty() {
        for node in &cur_layer {
            let children = dag
                .graph
                .neighbors_directed(*node, petgraph::Direction::Outgoing);
            let mut used_indexes: HashSet<NodeIndex> = HashSet::new();
            for succ in children {
                // Skip duplicate successors
                if used_indexes.contains(&succ) {
                    continue;
                }
                used_indexes.insert(succ);
                let mut multiplicity: usize = 0;
                let raw_edges = dag
                    .graph
                    .edges_directed(*node, petgraph::Direction::Outgoing);
                for edge in raw_edges {
                    if edge.target() == succ {
                        multiplicity += 1;
                    }
                }
                predecessor_count
                    .entry(succ)
                    .and_modify(|e| *e -= multiplicity)
                    .or_insert(dag.in_degree(succ.index()) - multiplicity);
                if *predecessor_count.get(&succ).unwrap() == 0 {
                    next_layer.push(succ);
                    predecessor_count.remove(&succ);
                }
            }
        }
        let mut layer_node_data: Vec<&PyObject> = Vec::new();
        for layer_node in &next_layer {
            layer_node_data.push(&dag[*layer_node]);
        }
        if !layer_node_data.is_empty() {
            output.push(layer_node_data);
        }
        cur_layer = next_layer;
        next_layer = Vec::new();
    }
    Ok(PyList::new(py, output).into())
}

/// Get the distance matrix for a directed graph
///
/// This differs from functions like digraph_floyd_warshall_numpy in that the
/// edge weight/data payload is not used and each edge is treated as a
/// distance of 1.
///
/// This function is also multithreaded and will run in parallel if the number
/// of nodes in the graph is above the value of ``parallel_threshold`` (it
/// defaults to 300). If the function will be running in parallel the env var
/// ``RAYON_NUM_THREADS`` can be used to adjust how many threads will be used.
///
/// :param PyDiGraph graph: The graph to get the distance matrix for
/// :param int parallel_threshold: The number of nodes to calculate the
///     the distance matrix in parallel at. It defaults to 300, but this can
///     be tuned
/// :param bool as_undirected: If set to ``True`` the input directed graph
///     will be treat as if each edge was bidirectional/undirected in the
///     output distance matrix.
///
/// :returns: The distance matrix
/// :rtype: numpy.ndarray
#[pyfunction(parallel_threshold = "300", as_undirected = "false")]
#[text_signature = "(graph, /, parallel_threshold=300, as_undirected=False)"]
pub fn digraph_distance_matrix(
    py: Python,
    graph: &digraph::PyDiGraph,
    parallel_threshold: usize,
    as_undirected: bool,
) -> PyResult<PyObject> {
    let n = graph.node_count();
    let mut matrix = Array2::<f64>::zeros((n, n));
    let bfs_traversal = |index: usize, mut row: ArrayViewMut1<f64>| {
        let mut seen: HashMap<NodeIndex, usize> = HashMap::with_capacity(n);
        let start_index = NodeIndex::new(index);
        let mut level = 0;
        let mut next_level: HashSet<NodeIndex> = HashSet::new();
        next_level.insert(start_index);
        while !next_level.is_empty() {
            let this_level = next_level;
            next_level = HashSet::new();
            let mut found: Vec<NodeIndex> = Vec::new();
            for v in this_level {
                if !seen.contains_key(&v) {
                    seen.insert(v, level);
                    found.push(v);
                    row[[v.index()]] = level as f64;
                }
            }
            if seen.len() == n {
                return;
            }
            for node in found {
                for v in graph
                    .graph
                    .neighbors_directed(node, petgraph::Direction::Outgoing)
                {
                    next_level.insert(v);
                }
                if as_undirected {
                    for v in graph
                        .graph
                        .neighbors_directed(node, petgraph::Direction::Incoming)
                    {
                        next_level.insert(v);
                    }
                }
            }
            level += 1
        }
    };
    if n < parallel_threshold {
        matrix
            .axis_iter_mut(Axis(0))
            .enumerate()
            .for_each(|(index, row)| bfs_traversal(index, row));
    } else {
        // Parallelize by row and iterate from each row index in BFS order
        matrix
            .axis_iter_mut(Axis(0))
            .into_par_iter()
            .enumerate()
            .for_each(|(index, row)| bfs_traversal(index, row));
    }
    Ok(matrix.into_pyarray(py).into())
}

/// Get the distance matrix for an undirected graph
///
/// This differs from functions like digraph_floyd_warshall_numpy in that the
/// edge weight/data payload is not used and each edge is treated as a
/// distance of 1.
///
/// This function is also multithreaded and will run in parallel if the number
/// of nodes in the graph is above the value of ``paralllel_threshold`` (it
/// defaults to 300). If the function will be running in parallel the env var
/// ``RAYON_NUM_THREADS`` can be used to adjust how many threads will be used.
///
/// :param PyGraph graph: The graph to get the distance matrix for
/// :param int parallel_threshold: The number of nodes to calculate the
///     the distance matrix in parallel at. It defaults to 300, but this can
///     be tuned
///
/// :returns: The distance matrix
/// :rtype: numpy.ndarray
#[pyfunction(parallel_threshold = "300")]
#[text_signature = "(graph, /, parallel_threshold=300)"]
pub fn graph_distance_matrix(
    py: Python,
    graph: &graph::PyGraph,
    parallel_threshold: usize,
) -> PyResult<PyObject> {
    let n = graph.node_count();
    let mut matrix = Array2::<f64>::zeros((n, n));
    let bfs_traversal = |index: usize, mut row: ArrayViewMut1<f64>| {
        let mut seen: HashMap<NodeIndex, usize> = HashMap::with_capacity(n);
        let start_index = NodeIndex::new(index);
        let mut level = 0;
        let mut next_level: HashSet<NodeIndex> = HashSet::new();
        next_level.insert(start_index);
        while !next_level.is_empty() {
            let this_level = next_level;
            next_level = HashSet::new();
            let mut found: Vec<NodeIndex> = Vec::new();
            for v in this_level {
                if !seen.contains_key(&v) {
                    seen.insert(v, level);
                    found.push(v);
                    row[[v.index()]] = level as f64;
                }
            }
            if seen.len() == n {
                return;
            }
            for node in found {
                for v in graph.graph.neighbors(node) {
                    next_level.insert(v);
                }
            }
            level += 1
        }
    };
    if n < parallel_threshold {
        matrix
            .axis_iter_mut(Axis(0))
            .enumerate()
            .for_each(|(index, row)| bfs_traversal(index, row));
    } else {
        // Parallelize by row and iterate from each row index in BFS order
        matrix
            .axis_iter_mut(Axis(0))
            .into_par_iter()
            .enumerate()
            .for_each(|(index, row)| bfs_traversal(index, row));
    }
    Ok(matrix.into_pyarray(py).into())
}

/// Return the adjacency matrix for a PyDiGraph object
///
/// In the case where there are multiple edges between nodes the value in the
/// output matrix will be the sum of the edges' weights.
///
/// :param PyDiGraph graph: The DiGraph used to generate the adjacency matrix
///     from
/// :param callable weight_fn: A callable object (function, lambda, etc) which
///     will be passed the edge object and expected to return a ``float``. This
///     tells retworkx/rust how to extract a numerical weight as a ``float``
///     for edge object. Some simple examples are::
///
///         dag_adjacency_matrix(dag, weight_fn: lambda x: 1)
///
///     to return a weight of 1 for all edges. Also::
///
///         dag_adjacency_matrix(dag, weight_fn: lambda x: float(x))
///
///     to cast the edge object as a float as the weight. If this is not
///     specified a default value (either ``default_weight`` or 1) will be used
///     for all edges.
/// :param float default_weight: If ``weight_fn`` is not used this can be
///     optionally used to specify a default weight to use for all edges.
///
///  :return: The adjacency matrix for the input dag as a numpy array
///  :rtype: numpy.ndarray
#[pyfunction(default_weight = "1.0")]
#[text_signature = "(graph, /, weight_fn=None, default_weight=1.0)"]
fn digraph_adjacency_matrix(
    py: Python,
    graph: &digraph::PyDiGraph,
    weight_fn: Option<PyObject>,
    default_weight: f64,
) -> PyResult<PyObject> {
    let n = graph.node_count();
    let mut matrix = Array2::<f64>::zeros((n, n));
    for (i, j, weight) in get_edge_iter_with_weights(graph) {
        let edge_weight =
            weight_callable(py, &weight_fn, &weight, default_weight)?;
        matrix[[i, j]] += edge_weight;
    }
    Ok(matrix.into_pyarray(py).into())
}

/// Return the adjacency matrix for a PyGraph class
///
/// In the case where there are multiple edges between nodes the value in the
/// output matrix will be the sum of the edges' weights.
///
/// :param PyGraph graph: The graph used to generate the adjacency matrix from
/// :param weight_fn: A callable object (function, lambda, etc) which
///     will be passed the edge object and expected to return a ``float``. This
///     tells retworkx/rust how to extract a numerical weight as a ``float``
///     for edge object. Some simple examples are::
///
///         graph_adjacency_matrix(graph, weight_fn: lambda x: 1)
///
///     to return a weight of 1 for all edges. Also::
///
///         graph_adjacency_matrix(graph, weight_fn: lambda x: float(x))
///
///     to cast the edge object as a float as the weight. If this is not
///     specified a default value (either ``default_weight`` or 1) will be used
///     for all edges.
/// :param float default_weight: If ``weight_fn`` is not used this can be
///     optionally used to specify a default weight to use for all edges.
///
/// :return: The adjacency matrix for the input dag as a numpy array
/// :rtype: numpy.ndarray
#[pyfunction(default_weight = "1.0")]
#[text_signature = "(graph, /, weight_fn=None, default_weight=1.0)"]
fn graph_adjacency_matrix(
    py: Python,
    graph: &graph::PyGraph,
    weight_fn: Option<PyObject>,
    default_weight: f64,
) -> PyResult<PyObject> {
    let n = graph.node_count();
    let mut matrix = Array2::<f64>::zeros((n, n));
    for (i, j, weight) in get_edge_iter_with_weights(graph) {
        let edge_weight =
            weight_callable(py, &weight_fn, &weight, default_weight)?;
        matrix[[i, j]] += edge_weight;
        matrix[[j, i]] += edge_weight;
    }
    Ok(matrix.into_pyarray(py).into())
}

/// Return all simple paths between 2 nodes in a PyGraph object
///
/// A simple path is a path with no repeated nodes.
///
/// :param PyGraph graph: The graph to find the path in
/// :param int from: The node index to find the paths from
/// :param int to: The node index to find the paths to
/// :param int min_depth: The minimum depth of the path to include in the output
///     list of paths. By default all paths are included regardless of depth,
///     setting to 0 will behave like the default.
/// :param int cutoff: The maximum depth of path to include in the output list
///     of paths. By default includes all paths regardless of depth, setting to
///     0 will behave like default.
///
/// :returns: A list of lists where each inner list is a path of node indices
/// :rtype: list
#[pyfunction]
#[text_signature = "(graph, from, to, /, min=None, cutoff=None)"]
fn graph_all_simple_paths(
    graph: &graph::PyGraph,
    from: usize,
    to: usize,
    min_depth: Option<usize>,
    cutoff: Option<usize>,
) -> PyResult<Vec<Vec<usize>>> {
    let from_index = NodeIndex::new(from);
    if !graph.graph.contains_node(from_index) {
        return Err(InvalidNode::new_err(
            "The input index for 'from' is not a valid node index",
        ));
    }
    let to_index = NodeIndex::new(to);
    if !graph.graph.contains_node(to_index) {
        return Err(InvalidNode::new_err(
            "The input index for 'to' is not a valid node index",
        ));
    }
    let min_intermediate_nodes: usize = match min_depth {
        Some(depth) => depth - 2,
        None => 0,
    };
    let cutoff_petgraph: Option<usize> = match cutoff {
        Some(depth) => Some(depth - 2),
        None => None,
    };
    let result: Vec<Vec<usize>> = algo::all_simple_paths(
        graph,
        from_index,
        to_index,
        min_intermediate_nodes,
        cutoff_petgraph,
    )
    .map(|v: Vec<NodeIndex>| v.into_iter().map(|i| i.index()).collect())
    .collect();
    Ok(result)
}

/// Return all simple paths between 2 nodes in a PyDiGraph object
///
/// A simple path is a path with no repeated nodes.
///
/// :param PyDiGraph graph: The graph to find the path in
/// :param int from: The node index to find the paths from
/// :param int to: The node index to find the paths to
/// :param int min_depth: The minimum depth of the path to include in the output
///     list of paths. By default all paths are included regardless of depth,
///     sett to 0 will behave like the default.
/// :param int cutoff: The maximum depth of path to include in the output list
///     of paths. By default includes all paths regardless of depth, setting to
///     0 will behave like default.
///
/// :returns: A list of lists where each inner list is a path
/// :rtype: list
#[pyfunction]
#[text_signature = "(graph, from, to, /, min_depth=None, cutoff=None)"]
fn digraph_all_simple_paths(
    graph: &digraph::PyDiGraph,
    from: usize,
    to: usize,
    min_depth: Option<usize>,
    cutoff: Option<usize>,
) -> PyResult<Vec<Vec<usize>>> {
    let from_index = NodeIndex::new(from);
    if !graph.graph.contains_node(from_index) {
        return Err(InvalidNode::new_err(
            "The input index for 'from' is not a valid node index",
        ));
    }
    let to_index = NodeIndex::new(to);
    if !graph.graph.contains_node(to_index) {
        return Err(InvalidNode::new_err(
            "The input index for 'to' is not a valid node index",
        ));
    }
    let min_intermediate_nodes: usize = match min_depth {
        Some(depth) => depth - 2,
        None => 0,
    };
    let cutoff_petgraph: Option<usize> = match cutoff {
        Some(depth) => Some(depth - 2),
        None => None,
    };
    let result: Vec<Vec<usize>> = algo::all_simple_paths(
        graph,
        from_index,
        to_index,
        min_intermediate_nodes,
        cutoff_petgraph,
    )
    .map(|v: Vec<NodeIndex>| v.into_iter().map(|i| i.index()).collect())
    .collect();
    Ok(result)
}

fn weight_callable(
    py: Python,
    weight_fn: &Option<PyObject>,
    weight: &PyObject,
    default: f64,
) -> PyResult<f64> {
    match weight_fn {
        Some(weight_fn) => {
            let res = weight_fn.call1(py, (weight,))?;
            res.extract(py)
        }
        None => Ok(default),
    }
}

/// Find the shortest path from a node
///
/// This function will generate the shortest path from a source node using
/// Dijkstra's algorithm.
///
/// :param PyGraph graph:
/// :param int source: The node index to find paths from
/// :param int target: An optional target to find a path to
/// :param weight_fn: An optional weight function for an edge. It will accept
///     a single argument, the edge's weight object and will return a float which
///     will be used to represent the weight/cost of the edge
/// :param float default_weight: If ``weight_fn`` isn't specified this optional
///     float value will be used for the weight/cost of each edge.
/// :param bool as_undirected: If set to true the graph will be treated as
///     undirected for finding the shortest path.
///
/// :return: Dictionary of paths. The keys are destination node indices and
///     the dict values are lists of node indices making the path.
/// :rtype: dict
#[pyfunction(default_weight = "1.0", as_undirected = "false")]
#[text_signature = "(graph, source, /, target=None weight_fn=None, default_weight=1.0)"]
pub fn graph_dijkstra_shortest_paths(
    py: Python,
    graph: &graph::PyGraph,
    source: usize,
    target: Option<usize>,
    weight_fn: Option<PyObject>,
    default_weight: f64,
) -> PyResult<PyObject> {
    let start = NodeIndex::new(source);
    let goal_index: Option<NodeIndex> = match target {
        Some(node) => Some(NodeIndex::new(node)),
        None => None,
    };
    let mut paths: HashMap<NodeIndex, Vec<NodeIndex>> =
        HashMap::with_capacity(graph.node_count());
    dijkstra::dijkstra(
        graph,
        start,
        goal_index,
        |e| weight_callable(py, &weight_fn, e.weight(), default_weight),
        Some(&mut paths),
    )?;

    let out_dict = PyDict::new(py);
    for (index, value) in paths {
        let int_index = index.index();
        if int_index == source {
            continue;
        }
        if (target.is_some() && target.unwrap() == int_index)
            || target.is_none()
        {
            out_dict.set_item(
                int_index,
                value
                    .iter()
                    .map(|index| index.index())
                    .collect::<Vec<usize>>(),
            )?;
        }
    }
    Ok(out_dict.into())
}

/// Find the shortest path from a node
///
/// This function will generate the shortest path from a source node using
/// Dijkstra's algorithm.
///
/// :param PyDiGraph graph:
/// :param int source: The node index to find paths from
/// :param int target: An optional target path to find the path
/// :param weight_fn: An optional weight function for an edge. It will accept
///     a single argument, the edge's weight object and will return a float which
///     will be used to represent the weight/cost of the edge
/// :param float default_weight: If ``weight_fn`` isn't specified this optional
///     float value will be used for the weight/cost of each edge.
/// :param bool as_undirected: If set to true the graph will be treated as
///     undirected for finding the shortest path.
///
/// :return: Dictionary of paths. The keys are destination node indices and
///     the dict values are lists of node indices making the path.
/// :rtype: dict
#[pyfunction(default_weight = "1.0", as_undirected = "false")]
#[text_signature = "(graph, source, /, target=None weight_fn=None, default_weight=1.0, as_undirected=False)"]
pub fn digraph_dijkstra_shortest_paths(
    py: Python,
    graph: &digraph::PyDiGraph,
    source: usize,
    target: Option<usize>,
    weight_fn: Option<PyObject>,
    default_weight: f64,
    as_undirected: bool,
) -> PyResult<PyObject> {
    let start = NodeIndex::new(source);
    let goal_index: Option<NodeIndex> = match target {
        Some(node) => Some(NodeIndex::new(node)),
        None => None,
    };
    let mut paths: HashMap<NodeIndex, Vec<NodeIndex>> =
        HashMap::with_capacity(graph.node_count());
    if as_undirected {
        dijkstra::dijkstra(
            // TODO: Use petgraph undirected adapter after
            // https://github.com/petgraph/petgraph/pull/318 is available in
            // a petgraph release.
            &graph.to_undirected(py),
            start,
            goal_index,
            |e| weight_callable(py, &weight_fn, e.weight(), default_weight),
            Some(&mut paths),
        )?;
    } else {
        dijkstra::dijkstra(
            graph,
            start,
            goal_index,
            |e| weight_callable(py, &weight_fn, e.weight(), default_weight),
            Some(&mut paths),
        )?;
    }

    let out_dict = PyDict::new(py);
    for (index, value) in paths {
        let int_index = index.index();
        if int_index == source {
            continue;
        }
        if (target.is_some() && target.unwrap() == int_index)
            || target.is_none()
        {
            out_dict.set_item(
                int_index,
                value
                    .iter()
                    .map(|index| index.index())
                    .collect::<Vec<usize>>(),
            )?;
        }
    }
    Ok(out_dict.into())
}

/// Compute the lengths of the shortest paths for a PyGraph object using
/// Dijkstra's algorithm
///
/// :param PyGraph graph: The input graph to use
/// :param int node: The node index to use as the source for finding the
///     shortest paths from
/// :param edge_cost_fn: A python callable that will take in 1 parameter, an
///     edge's data object and will return a float that represents the
///     cost/weight of that edge. It must be non-negative
/// :param int goal: An optional node index to use as the end of the path.
///     When specified the traversal will stop when the goal is reached and
///     the output dictionary will only have a single entry with the length
///     of the shortest path to the goal node.
///
/// :returns: A dictionary of the shortest paths from the provided node where
///     the key is the node index of the end of the path and the value is the
///     cost/sum of the weights of path
/// :rtype: dict
#[pyfunction]
#[text_signature = "(graph, node, edge_cost_fn, /, goal=None)"]
fn graph_dijkstra_shortest_path_lengths(
    py: Python,
    graph: &graph::PyGraph,
    node: usize,
    edge_cost_fn: PyObject,
    goal: Option<usize>,
) -> PyResult<PyObject> {
    let edge_cost_callable = |a: &PyObject| -> PyResult<f64> {
        let res = edge_cost_fn.call1(py, (a,))?;
        let raw = res.to_object(py);
        raw.extract(py)
    };

    let start = NodeIndex::new(node);
    let goal_index: Option<NodeIndex> = match goal {
        Some(node) => Some(NodeIndex::new(node)),
        None => None,
    };

    let res = dijkstra::dijkstra(
        graph,
        start,
        goal_index,
        |e| edge_cost_callable(e.weight()),
        None,
    )?;
    let out_dict = PyDict::new(py);
    for (index, value) in res {
        let int_index = index.index();
        if int_index == node {
            continue;
        }
        if (goal.is_some() && goal.unwrap() == int_index) || goal.is_none() {
            out_dict.set_item(int_index, value)?;
        }
    }
    Ok(out_dict.into())
}

/// Compute the lengths of the shortest paths for a PyDiGraph object using
/// Dijkstra's algorithm
///
/// :param PyDiGraph graph: The input graph to use
/// :param int node: The node index to use as the source for finding the
///     shortest paths from
/// :param edge_cost_fn: A python callable that will take in 1 parameter, an
///     edge's data object and will return a float that represents the
///     cost/weight of that edge. It must be non-negative
/// :param int goal: An optional node index to use as the end of the path.
///     When specified the traversal will stop when the goal is reached and
///     the output dictionary will only have a single entry with the length
///     of the shortest path to the goal node.
///
/// :returns: A dictionary of the shortest paths from the provided node where
///     the key is the node index of the end of the path and the value is the
///     cost/sum of the weights of path
/// :rtype: dict
#[pyfunction]
#[text_signature = "(graph, node, edge_cost_fn, /, goal=None)"]
fn digraph_dijkstra_shortest_path_lengths(
    py: Python,
    graph: &digraph::PyDiGraph,
    node: usize,
    edge_cost_fn: PyObject,
    goal: Option<usize>,
) -> PyResult<PyObject> {
    let edge_cost_callable = |a: &PyObject| -> PyResult<f64> {
        let res = edge_cost_fn.call1(py, (a,))?;
        let raw = res.to_object(py);
        raw.extract(py)
    };

    let start = NodeIndex::new(node);
    let goal_index: Option<NodeIndex> = match goal {
        Some(node) => Some(NodeIndex::new(node)),
        None => None,
    };

    let res = dijkstra::dijkstra(
        graph,
        start,
        goal_index,
        |e| edge_cost_callable(e.weight()),
        None,
    )?;
    let out_dict = PyDict::new(py);
    for (index, value) in res {
        let int_index = index.index();
        if int_index == node {
            continue;
        }
        if (goal.is_some() && goal.unwrap() == int_index) || goal.is_none() {
            out_dict.set_item(int_index, value)?;
        }
    }
    Ok(out_dict.into())
}

/// Compute the A* shortest path for a PyGraph
///
/// :param PyGraph graph: The input graph to use
/// :param int node: The node index to compute the path from
/// :param goal_fn: A python callable that will take in 1 parameter, a node's data
///     object and will return a boolean which will be True if it is the finish
///     node.
/// :param edge_cost_fn: A python callable that will take in 1 parameter, an edge's
///     data object and will return a float that represents the cost of that
///     edge. It must be non-negative.
/// :param estimate_cost_fn: A python callable that will take in 1 parameter, a
///     node's data object and will return a float which represents the estimated
///     cost for the next node. The return must be non-negative. For the
///     algorithm to find the actual shortest path, it should be admissible,
///     meaning that it should never overestimate the actual cost to get to the
///     nearest goal node.
///
/// :returns: The computed shortest path between node and finish as a list
///     of node indices.
/// :rtype: NodeIndices
#[pyfunction]
#[text_signature = "(graph, node, goal_fn, edge_cost, estimate_cost, /)"]
fn graph_astar_shortest_path(
    py: Python,
    graph: &graph::PyGraph,
    node: usize,
    goal_fn: PyObject,
    edge_cost_fn: PyObject,
    estimate_cost_fn: PyObject,
) -> PyResult<NodeIndices> {
    let goal_fn_callable = |a: &PyObject| -> PyResult<bool> {
        let res = goal_fn.call1(py, (a,))?;
        let raw = res.to_object(py);
        let output: bool = raw.extract(py)?;
        Ok(output)
    };

    let edge_cost_callable = |a: &PyObject| -> PyResult<f64> {
        let res = edge_cost_fn.call1(py, (a,))?;
        let raw = res.to_object(py);
        let output: f64 = raw.extract(py)?;
        Ok(output)
    };

    let estimate_cost_callable = |a: &PyObject| -> PyResult<f64> {
        let res = estimate_cost_fn.call1(py, (a,))?;
        let raw = res.to_object(py);
        let output: f64 = raw.extract(py)?;
        Ok(output)
    };
    let start = NodeIndex::new(node);

    let astar_res = astar::astar(
        graph,
        start,
        |f| goal_fn_callable(graph.graph.node_weight(f).unwrap()),
        |e| edge_cost_callable(e.weight()),
        |estimate| {
            estimate_cost_callable(graph.graph.node_weight(estimate).unwrap())
        },
    )?;
    let path = match astar_res {
        Some(path) => path,
        None => {
            return Err(NoPathFound::new_err(
                "No path found that satisfies goal_fn",
            ))
        }
    };
    Ok(NodeIndices {
        nodes: path.1.into_iter().map(|x| x.index()).collect(),
    })
}

/// Compute the A* shortest path for a PyDiGraph
///
/// :param PyDiGraph graph: The input graph to use
/// :param int node: The node index to compute the path from
/// :param goal_fn: A python callable that will take in 1 parameter, a node's
///     data object and will return a boolean which will be True if it is the
///     finish node.
/// :param edge_cost_fn: A python callable that will take in 1 parameter, an
///     edge's data object and will return a float that represents the cost of
///     that edge. It must be non-negative.
/// :param estimate_cost_fn: A python callable that will take in 1 parameter, a
///     node's data object and will return a float which represents the
///     estimated cost for the next node. The return must be non-negative. For
///     the algorithm to find the actual shortest path, it should be
///     admissible, meaning that it should never overestimate the actual cost
///     to get to the nearest goal node.
///
/// :return: The computed shortest path between node and finish as a list
///     of node indices.
/// :rtype: NodeIndices
#[pyfunction]
#[text_signature = "(graph, node, goal_fn, edge_cost, estimate_cost, /)"]
fn digraph_astar_shortest_path(
    py: Python,
    graph: &digraph::PyDiGraph,
    node: usize,
    goal_fn: PyObject,
    edge_cost_fn: PyObject,
    estimate_cost_fn: PyObject,
) -> PyResult<NodeIndices> {
    let goal_fn_callable = |a: &PyObject| -> PyResult<bool> {
        let res = goal_fn.call1(py, (a,))?;
        let raw = res.to_object(py);
        let output: bool = raw.extract(py)?;
        Ok(output)
    };

    let edge_cost_callable = |a: &PyObject| -> PyResult<f64> {
        let res = edge_cost_fn.call1(py, (a,))?;
        let raw = res.to_object(py);
        let output: f64 = raw.extract(py)?;
        Ok(output)
    };

    let estimate_cost_callable = |a: &PyObject| -> PyResult<f64> {
        let res = estimate_cost_fn.call1(py, (a,))?;
        let raw = res.to_object(py);
        let output: f64 = raw.extract(py)?;
        Ok(output)
    };
    let start = NodeIndex::new(node);

    let astar_res = astar::astar(
        graph,
        start,
        |f| goal_fn_callable(graph.graph.node_weight(f).unwrap()),
        |e| edge_cost_callable(e.weight()),
        |estimate| {
            estimate_cost_callable(graph.graph.node_weight(estimate).unwrap())
        },
    )?;
    let path = match astar_res {
        Some(path) => path,
        None => {
            return Err(NoPathFound::new_err(
                "No path found that satisfies goal_fn",
            ))
        }
    };
    Ok(NodeIndices {
        nodes: path.1.into_iter().map(|x| x.index()).collect(),
    })
}

/// Return a :math:`G_{np}` directed random graph, also known as an
/// Erdős-Rényi graph or a binomial graph.
///
/// For number of nodes :math:`n` and probability :math:`p`, the :math:`G_{n,p}`
/// graph algorithm creates :math:`n` nodes, and for all the :math:`n (n - 1)` possible edges,
/// each edge is created independently with probability :math:`p`.
/// In general, for any probability :math:`p`, the expected number of edges returned
/// is :math:`m = p n (n - 1)`. If :math:`p = 0` or :math:`p = 1`, the returned
/// graph is not random and will always be an empty or a complete graph respectively.
/// An empty graph has zero edges and a complete directed graph has :math:`n (n - 1)` edges.
/// The run time is :math:`O(n + m)` where :math:`m` is the expected number of edges mentioned above.
/// When :math:`p = 0`, run time always reduces to :math:`O(n)`, as the lower bound.
/// When :math:`p = 1`, run time always goes to :math:`O(n + n (n - 1))`, as the upper bound.
/// For other probabilities, this algorithm [1]_ runs in :math:`O(n + m)` time.
///
/// For :math:`0 < p < 1`, the algorithm is based on the implementation of the networkx function
/// ``fast_gnp_random_graph`` [2]_
///
/// :param int num_nodes: The number of nodes to create in the graph
/// :param float probability: The probability of creating an edge between two nodes
/// :param int seed: An optional seed to use for the random number generator
///
/// :return: A PyDiGraph object
/// :rtype: PyDiGraph
///
/// .. [1] Vladimir Batagelj and Ulrik Brandes,
///    "Efficient generation of large random networks",
///    Phys. Rev. E, 71, 036113, 2005.
/// .. [2] https://github.com/networkx/networkx/blob/networkx-2.4/networkx/generators/random_graphs.py#L49-L120
#[pyfunction]
#[text_signature = "(num_nodes, probability, seed=None, /)"]
pub fn directed_gnp_random_graph(
    py: Python,
    num_nodes: isize,
    probability: f64,
    seed: Option<u64>,
) -> PyResult<digraph::PyDiGraph> {
    if num_nodes <= 0 {
        return Err(PyValueError::new_err("num_nodes must be > 0"));
    }
    let mut rng: Pcg64 = match seed {
        Some(seed) => Pcg64::seed_from_u64(seed),
        None => Pcg64::from_entropy(),
    };
    let mut inner_graph = StableDiGraph::<PyObject, PyObject>::new();
    for x in 0..num_nodes {
        inner_graph.add_node(x.to_object(py));
    }
    if !(0.0..=1.0).contains(&probability) {
        return Err(PyValueError::new_err(
            "Probability out of range, must be 0 <= p <= 1",
        ));
    }
    if probability > 0.0 {
        if (probability - 1.0).abs() < std::f64::EPSILON {
            for u in 0..num_nodes {
                for v in 0..num_nodes {
                    if u != v {
                        // exclude self-loops
                        let u_index = NodeIndex::new(u as usize);
                        let v_index = NodeIndex::new(v as usize);
                        inner_graph.add_edge(u_index, v_index, py.None());
                    }
                }
            }
        } else {
            let mut v: isize = 0;
            let mut w: isize = -1;
            let lp: f64 = (1.0 - probability).ln();

            let between = Uniform::new(0.0, 1.0);
            while v < num_nodes {
                let random: f64 = between.sample(&mut rng);
                let lr: f64 = (1.0 - random).ln();
                let ratio: isize = (lr / lp) as isize;
                w = w + 1 + ratio;
                // avoid self loops
                if v == w {
                    w += 1;
                }
                while v < num_nodes && num_nodes <= w {
                    w -= v;
                    v += 1;
                    // avoid self loops
                    if v == w {
                        w -= v;
                        v += 1;
                    }
                }
                if v < num_nodes {
                    let v_index = NodeIndex::new(v as usize);
                    let w_index = NodeIndex::new(w as usize);
                    inner_graph.add_edge(v_index, w_index, py.None());
                }
            }
        }
    }

    let graph = digraph::PyDiGraph {
        graph: inner_graph,
        cycle_state: algo::DfsSpace::default(),
        check_cycle: false,
        node_removed: false,
        multigraph: true,
    };
    Ok(graph)
}

/// Return a :math:`G_{np}` random undirected graph, also known as an
/// Erdős-Rényi graph or a binomial graph.
///
/// For number of nodes :math:`n` and probability :math:`p`, the :math:`G_{n,p}`
/// graph algorithm creates :math:`n` nodes, and for all the :math:`n (n - 1)/2` possible edges,
/// each edge is created independently with probability :math:`p`.
/// In general, for any probability :math:`p`, the expected number of edges returned
/// is :math:`m = p n (n - 1)/2`. If :math:`p = 0` or :math:`p = 1`, the returned
/// graph is not random and will always be an empty or a complete graph respectively.
/// An empty graph has zero edges and a complete undirected graph has :math:`n (n - 1)/2` edges.
/// The run time is :math:`O(n + m)` where :math:`m` is the expected number of edges mentioned above.
/// When :math:`p = 0`, run time always reduces to :math:`O(n)`, as the lower bound.
/// When :math:`p = 1`, run time always goes to :math:`O(n + n (n - 1)/2)`, as the upper bound.
/// For other probabilities, this algorithm [1]_ runs in :math:`O(n + m)` time.
///
/// For :math:`0 < p < 1`, the algorithm is based on the implementation of the networkx function
/// ``fast_gnp_random_graph`` [2]_
///
/// :param int num_nodes: The number of nodes to create in the graph
/// :param float probability: The probability of creating an edge between two nodes
/// :param int seed: An optional seed to use for the random number generator
///
/// :return: A PyGraph object
/// :rtype: PyGraph
///
/// .. [1] Vladimir Batagelj and Ulrik Brandes,
///    "Efficient generation of large random networks",
///    Phys. Rev. E, 71, 036113, 2005.
/// .. [2] https://github.com/networkx/networkx/blob/networkx-2.4/networkx/generators/random_graphs.py#L49-L120
#[pyfunction]
#[text_signature = "(num_nodes, probability, seed=None, /)"]
pub fn undirected_gnp_random_graph(
    py: Python,
    num_nodes: isize,
    probability: f64,
    seed: Option<u64>,
) -> PyResult<graph::PyGraph> {
    if num_nodes <= 0 {
        return Err(PyValueError::new_err("num_nodes must be > 0"));
    }
    let mut rng: Pcg64 = match seed {
        Some(seed) => Pcg64::seed_from_u64(seed),
        None => Pcg64::from_entropy(),
    };
    let mut inner_graph = StableUnGraph::<PyObject, PyObject>::default();
    for x in 0..num_nodes {
        inner_graph.add_node(x.to_object(py));
    }
    if !(0.0..=1.0).contains(&probability) {
        return Err(PyValueError::new_err(
            "Probability out of range, must be 0 <= p <= 1",
        ));
    }
    if probability > 0.0 {
        if (probability - 1.0).abs() < std::f64::EPSILON {
            for u in 0..num_nodes {
                for v in u + 1..num_nodes {
                    let u_index = NodeIndex::new(u as usize);
                    let v_index = NodeIndex::new(v as usize);
                    inner_graph.add_edge(u_index, v_index, py.None());
                }
            }
        } else {
            let mut v: isize = 1;
            let mut w: isize = -1;
            let lp: f64 = (1.0 - probability).ln();

            let between = Uniform::new(0.0, 1.0);
            while v < num_nodes {
                let random: f64 = between.sample(&mut rng);
                let lr = (1.0 - random).ln();
                let ratio: isize = (lr / lp) as isize;
                w = w + 1 + ratio;
                while w >= v && v < num_nodes {
                    w -= v;
                    v += 1;
                }
                if v < num_nodes {
                    let v_index = NodeIndex::new(v as usize);
                    let w_index = NodeIndex::new(w as usize);
                    inner_graph.add_edge(v_index, w_index, py.None());
                }
            }
        }
    }

    let graph = graph::PyGraph {
        graph: inner_graph,
        node_removed: false,
        multigraph: true,
    };
    Ok(graph)
}

/// Return a :math:`G_{nm}` of a directed graph
///
/// Generates a random directed graph out of all the possible graphs with :math:`n` nodes and
/// :math:`m` edges. The generated graph will not be a multigraph and will not have self loops.
///
/// For :math:`n` nodes, the maximum edges that can be returned is :math:`n (n - 1)`.
/// Passing :math:`m` higher than that will still return the maximum number of edges.
/// If :math:`m = 0`, the returned graph will always be empty (no edges).
/// When a seed is provided, the results are reproducible. Passing a seed when :math:`m = 0`
/// or :math:`m >= n (n - 1)` has no effect, as the result will always be an empty or a complete graph respectively.
///
/// This algorithm has a time complexity of :math:`O(n + m)`
///
/// :param int num_nodes: The number of nodes to create in the graph
/// :param int num_edges: The number of edges to create in the graph
/// :param int seed: An optional seed to use for the random number generator
///
/// :return: A PyDiGraph object
/// :rtype: PyDiGraph
///
#[pyfunction]
#[text_signature = "(num_nodes, num_edges, seed=None, /)"]
pub fn directed_gnm_random_graph(
    py: Python,
    num_nodes: isize,
    num_edges: isize,
    seed: Option<u64>,
) -> PyResult<digraph::PyDiGraph> {
    if num_nodes <= 0 {
        return Err(PyValueError::new_err("num_nodes must be > 0"));
    }
    if num_edges < 0 {
        return Err(PyValueError::new_err("num_edges must be >= 0"));
    }
    let mut rng: Pcg64 = match seed {
        Some(seed) => Pcg64::seed_from_u64(seed),
        None => Pcg64::from_entropy(),
    };
    let mut inner_graph = StableDiGraph::<PyObject, PyObject>::new();
    for x in 0..num_nodes {
        inner_graph.add_node(x.to_object(py));
    }
    // if number of edges to be created is >= max,
    // avoid randomly missed trials and directly add edges between every node
    if num_edges >= num_nodes * (num_nodes - 1) {
        for u in 0..num_nodes {
            for v in 0..num_nodes {
                // avoid self-loops
                if u != v {
                    let u_index = NodeIndex::new(u as usize);
                    let v_index = NodeIndex::new(v as usize);
                    inner_graph.add_edge(u_index, v_index, py.None());
                }
            }
        }
    } else {
        let mut created_edges: isize = 0;
        let between = Uniform::new(0, num_nodes);
        while created_edges < num_edges {
            let u = between.sample(&mut rng);
            let v = between.sample(&mut rng);
            let u_index = NodeIndex::new(u as usize);
            let v_index = NodeIndex::new(v as usize);
            // avoid self-loops and multi-graphs
            if u != v && inner_graph.find_edge(u_index, v_index).is_none() {
                inner_graph.add_edge(u_index, v_index, py.None());
                created_edges += 1;
            }
        }
    }
    let graph = digraph::PyDiGraph {
        graph: inner_graph,
        cycle_state: algo::DfsSpace::default(),
        check_cycle: false,
        node_removed: false,
        multigraph: true,
    };
    Ok(graph)
}

/// Return a :math:`G_{nm}` of an undirected graph
///
/// Generates a random undirected graph out of all the possible graphs with :math:`n` nodes and
/// :math:`m` edges. The generated graph will not be a multigraph and will not have self loops.
///
/// For :math:`n` nodes, the maximum edges that can be returned is :math:`n (n - 1)/2`.
/// Passing :math:`m` higher than that will still return the maximum number of edges.
/// If :math:`m = 0`, the returned graph will always be empty (no edges).
/// When a seed is provided, the results are reproducible. Passing a seed when :math:`m = 0`
/// or :math:`m >= n (n - 1)/2` has no effect, as the result will always be an empty or a complete graph respectively.
///
/// This algorithm has a time complexity of :math:`O(n + m)`
///
/// :param int num_nodes: The number of nodes to create in the graph
/// :param int num_edges: The number of edges to create in the graph
/// :param int seed: An optional seed to use for the random number generator
///
/// :return: A PyGraph object
/// :rtype: PyGraph

#[pyfunction]
#[text_signature = "(num_nodes, probability, seed=None, /)"]
pub fn undirected_gnm_random_graph(
    py: Python,
    num_nodes: isize,
    num_edges: isize,
    seed: Option<u64>,
) -> PyResult<graph::PyGraph> {
    if num_nodes <= 0 {
        return Err(PyValueError::new_err("num_nodes must be > 0"));
    }
    if num_edges < 0 {
        return Err(PyValueError::new_err("num_edges must be >= 0"));
    }
    let mut rng: Pcg64 = match seed {
        Some(seed) => Pcg64::seed_from_u64(seed),
        None => Pcg64::from_entropy(),
    };
    let mut inner_graph = StableUnGraph::<PyObject, PyObject>::default();
    for x in 0..num_nodes {
        inner_graph.add_node(x.to_object(py));
    }
    // if number of edges to be created is >= max,
    // avoid randomly missed trials and directly add edges between every node
    if num_edges >= num_nodes * (num_nodes - 1) / 2 {
        for u in 0..num_nodes {
            for v in u + 1..num_nodes {
                let u_index = NodeIndex::new(u as usize);
                let v_index = NodeIndex::new(v as usize);
                inner_graph.add_edge(u_index, v_index, py.None());
            }
        }
    } else {
        let mut created_edges: isize = 0;
        let between = Uniform::new(0, num_nodes);
        while created_edges < num_edges {
            let u = between.sample(&mut rng);
            let v = between.sample(&mut rng);
            let u_index = NodeIndex::new(u as usize);
            let v_index = NodeIndex::new(v as usize);
            // avoid self-loops and multi-graphs
            if u != v && inner_graph.find_edge(u_index, v_index).is_none() {
                inner_graph.add_edge(u_index, v_index, py.None());
                created_edges += 1;
            }
        }
    }
    let graph = graph::PyGraph {
        graph: inner_graph,
        node_removed: false,
        multigraph: true,
    };
    Ok(graph)
}

/// Return a list of cycles which form a basis for cycles of a given PyGraph
///
/// A basis for cycles of a graph is a minimal collection of
/// cycles such that any cycle in the graph can be written
/// as a sum of cycles in the basis.  Here summation of cycles
/// is defined as the exclusive or of the edges.
///
/// This is adapted from algorithm CACM 491 [1]_.
///
/// :param PyGraph graph: The graph to find the cycle basis in
/// :param int root: Optional index for starting node for basis
///
/// :returns: A list of cycle lists. Each list is a list of node ids which
///     forms a cycle (loop) in the input graph
/// :rtype: list
///
/// .. [1] Paton, K. An algorithm for finding a fundamental set of
///    cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.
#[pyfunction]
#[text_signature = "(graph, /, root=None)"]
pub fn cycle_basis(
    graph: &graph::PyGraph,
    root: Option<usize>,
) -> Vec<Vec<usize>> {
    let mut root_node = root;
    let mut graph_nodes: HashSet<NodeIndex> =
        graph.graph.node_indices().collect();
    let mut cycles: Vec<Vec<usize>> = Vec::new();
    while !graph_nodes.is_empty() {
        let temp_value: NodeIndex;
        // If root_node is not set get an arbitrary node from the set of graph
        // nodes we've not "examined"
        let root_index = match root_node {
            Some(root_value) => NodeIndex::new(root_value),
            None => {
                temp_value = *graph_nodes.iter().next().unwrap();
                graph_nodes.remove(&temp_value);
                temp_value
            }
        };
        // Stack (ie "pushdown list") of vertices already in the spanning tree
        let mut stack: Vec<NodeIndex> = vec![root_index];
        // Map of node index to predecessor node index
        let mut pred: HashMap<NodeIndex, NodeIndex> = HashMap::new();
        pred.insert(root_index, root_index);
        // Set of examined nodes during this iteration
        let mut used: HashMap<NodeIndex, HashSet<NodeIndex>> = HashMap::new();
        used.insert(root_index, HashSet::new());
        // Walk the spanning tree
        while !stack.is_empty() {
            // Use the last element added so that cycles are easier to find
            let z = stack.pop().unwrap();
            for neighbor in graph.graph.neighbors(z) {
                // A new node was encountered:
                if !used.contains_key(&neighbor) {
                    pred.insert(neighbor, z);
                    stack.push(neighbor);
                    let mut temp_set: HashSet<NodeIndex> = HashSet::new();
                    temp_set.insert(z);
                    used.insert(neighbor, temp_set);
                // A self loop:
                } else if z == neighbor {
                    let cycle: Vec<usize> = vec![z.index()];
                    cycles.push(cycle);
                // A cycle was found:
                } else if !used.get(&z).unwrap().contains(&neighbor) {
                    let pn = used.get(&neighbor).unwrap();
                    let mut cycle: Vec<NodeIndex> = vec![neighbor, z];
                    let mut p = pred.get(&z).unwrap();
                    while !pn.contains(p) {
                        cycle.push(*p);
                        p = pred.get(p).unwrap();
                    }
                    cycle.push(*p);
                    cycles.push(cycle.iter().map(|x| x.index()).collect());
                    let neighbor_set = used.get_mut(&neighbor).unwrap();
                    neighbor_set.insert(z);
                }
            }
        }
        let mut temp_hashset: HashSet<NodeIndex> = HashSet::new();
        for key in pred.keys() {
            temp_hashset.insert(*key);
        }
        graph_nodes = graph_nodes.difference(&temp_hashset).copied().collect();
        root_node = None;
    }
    cycles
}

/// Compute a maximum-weighted matching for a :class:`~retworkx.PyGraph`
///
/// A matching is a subset of edges in which no node occurs more than once.
/// The weight of a matching is the sum of the weights of its edges.
/// A maximal matching cannot add more edges and still be a matching.
/// The cardinality of a matching is the number of matched edges.
///
/// This function takes time :math:`O(n^3)` where ``n`` is the number of nodes
/// in the graph.
///
/// This method is based on the "blossom" method for finding augmenting
/// paths and the "primal-dual" method for finding a matching of maximum
/// weight, both methods invented by Jack Edmonds [1]_.
///
/// :param PyGraph graph: The undirected graph to compute the max weight
///     matching for. Expects to have no parallel edges (multigraphs are
///     untested currently).
/// :param bool max_cardinality: If True, compute the maximum-cardinality
///     matching with maximum weight among all maximum-cardinality matchings.
///     Defaults False.
/// :param callable weight_fn: An optional callable that will be passed a
///     single argument the edge object for each edge in the graph. It is
///     expected to return an ``int`` weight for that edge. For example,
///     if the weights are all integers you can use: ``lambda x: x``. If not
///     specified the value for ``default_weight`` will be used for all
///     edge weights.
/// :param int default_weight: The ``int`` value to use for all edge weights
///     in the graph if ``weight_fn`` is not specified. Defaults to ``1``.
/// :param bool verify_optimum: A boolean flag to run a check that the found
///     solution is optimum. If set to true an exception will be raised if
///     the found solution is not optimum. This is mostly useful for testing.
///
/// :returns: A set of tuples ofthe matching, Note that only a single
///     direction will be listed in the output, for example:
///     ``{(0, 1),}``.
/// :rtype: set
///
/// .. [1] "Efficient Algorithms for Finding Maximum Matching in Graphs",
///     Zvi Galil, ACM Computing Surveys, 1986.
///
#[pyfunction(
    max_cardinality = "false",
    default_weight = 1,
    verify_optimum = "false"
)]
#[text_signature = "(graph, /, max_cardinality=False, weight_fn=None, default_weight=1, verify_optimum=False)"]
pub fn max_weight_matching(
    py: Python,
    graph: &graph::PyGraph,
    max_cardinality: bool,
    weight_fn: Option<PyObject>,
    default_weight: i128,
    verify_optimum: bool,
) -> PyResult<HashSet<(usize, usize)>> {
    max_weight_matching::max_weight_matching(
        py,
        graph,
        max_cardinality,
        weight_fn,
        default_weight,
        verify_optimum,
    )
}

/// Compute the strongly connected components for a directed graph
///
/// This function is implemented using Kosaraju's algorithm
///
/// :param PyDiGraph graph: The input graph to find the strongly connected
///     components for.
///
/// :return: A list of list of node ids for strongly connected components
/// :rtype: list
#[pyfunction]
#[text_signature = "(graph, /)"]
pub fn strongly_connected_components(
    graph: &digraph::PyDiGraph,
) -> Vec<Vec<usize>> {
    algo::kosaraju_scc(graph)
        .iter()
        .map(|x| x.iter().map(|id| id.index()).collect())
        .collect()
}

/// Return the first cycle encountered during DFS of a given PyDiGraph,
/// empty list is returned if no cycle is found
///
/// :param PyDiGraph graph: The graph to find the cycle in
/// :param int source: Optional index to find a cycle for. If not specified an
///     arbitrary node will be selected from the graph.
///
/// :returns: A list describing the cycle. The index of node ids which
///     forms a cycle (loop) in the input graph
/// :rtype: EdgeList
#[pyfunction]
#[text_signature = "(graph, /, source=None)"]
pub fn digraph_find_cycle(
    graph: &digraph::PyDiGraph,
    source: Option<usize>,
) -> EdgeList {
    let mut graph_nodes: HashSet<NodeIndex> =
        graph.graph.node_indices().collect();
    let mut cycle: Vec<(usize, usize)> =
        Vec::with_capacity(graph.graph.edge_count());
    let temp_value: NodeIndex;
    // If source is not set get an arbitrary node from the set of graph
    // nodes we've not "examined"
    let source_index = match source {
        Some(source_value) => NodeIndex::new(source_value),
        None => {
            temp_value = *graph_nodes.iter().next().unwrap();
            graph_nodes.remove(&temp_value);
            temp_value
        }
    };

    // Stack (ie "pushdown list") of vertices already in the spanning tree
    let mut stack: Vec<NodeIndex> = vec![source_index];
    // map to store parent of a node
    let mut pred: HashMap<NodeIndex, NodeIndex> = HashMap::new();
    // a node is in the visiting set if at least one of its child is unexamined
    let mut visiting = HashSet::new();
    // a node is in visited set if all of its children have been examined
    let mut visited = HashSet::new();
    while !stack.is_empty() {
        let mut z = *stack.last().unwrap();
        visiting.insert(z);

        let children = graph
            .graph
            .neighbors_directed(z, petgraph::Direction::Outgoing);

        for child in children {
            //cycle is found
            if visiting.contains(&child) {
                cycle.push((z.index(), child.index()));
                //backtrack
                loop {
                    if z == child {
                        cycle.reverse();
                        break;
                    }
                    cycle.push((pred[&z].index(), z.index()));
                    z = pred[&z];
                }
                return EdgeList { edges: cycle };
            }
            //if an unexplored node is encountered
            if !visited.contains(&child) {
                stack.push(child);
                pred.insert(child, z);
            }
        }

        let top = *stack.last().unwrap();
        //if no further children and explored, move to visited
        if top.index() == z.index() {
            stack.pop();
            visiting.remove(&z);
            visited.insert(z);
        }
    }
    EdgeList { edges: cycle }
}

fn _inner_is_matching(
    graph: &graph::PyGraph,
    matching: &HashSet<(usize, usize)>,
) -> bool {
    let has_edge = |e: &(usize, usize)| -> bool {
        graph
            .graph
            .contains_edge(NodeIndex::new(e.0), NodeIndex::new(e.1))
    };

    if !matching.iter().all(|e| has_edge(e)) {
        return false;
    }
    let mut found: HashSet<usize> = HashSet::with_capacity(2 * matching.len());
    for (v1, v2) in matching {
        if found.contains(v1) || found.contains(v2) {
            return false;
        }
        found.insert(*v1);
        found.insert(*v2);
    }
    true
}

/// Check if matching is valid for graph
///
/// A *matching* in a graph is a set of edges in which no two distinct
/// edges share a common endpoint.
///
/// :param PyDiGraph graph: The graph to check if the matching is valid for
/// :param set matching: A set of node index tuples for each edge in the
///     matching.
///
/// :returns: Whether the provided matching is a valid matching for the graph
/// :rtype: bool
#[pyfunction]
#[text_signature = "(graph, matching, /)"]
pub fn is_matching(
    graph: &graph::PyGraph,
    matching: HashSet<(usize, usize)>,
) -> bool {
    _inner_is_matching(graph, &matching)
}

/// Check if a matching is a maximal (**not** maximum) matching for a graph
///
/// A *maximal matching* in a graph is a matching in which adding any
/// edge would cause the set to no longer be a valid matching.
///
/// .. note::
///
///   This is not checking for a *maximum* (globally optimal) matching, but
///   a *maximal* (locally optimal) matching.
///
/// :param PyDiGraph graph: The graph to check if the matching is maximal for.
/// :param set matching: A set of node index tuples for each edge in the
///     matching.
///
/// :returns: Whether the provided matching is a valid matching and whether it
///     is maximal or not.
/// :rtype: bool
#[pyfunction]
#[text_signature = "(graph, matching, /)"]
pub fn is_maximal_matching(
    graph: &graph::PyGraph,
    matching: HashSet<(usize, usize)>,
) -> bool {
    if !_inner_is_matching(graph, &matching) {
        return false;
    }
    let edge_list: HashSet<[usize; 2]> = graph
        .edge_references()
        .map(|edge| {
            let mut tmp_array = [edge.source().index(), edge.target().index()];
            tmp_array.sort_unstable();
            tmp_array
        })
        .collect();
    let matched_edges: HashSet<[usize; 2]> = matching
        .iter()
        .map(|edge| {
            let mut tmp_array = [edge.0, edge.1];
            tmp_array.sort_unstable();
            tmp_array
        })
        .collect();
    let mut unmatched_edges = edge_list.difference(&matched_edges);
    unmatched_edges.all(|e| {
        let mut tmp_set = matching.clone();
        tmp_set.insert((e[0], e[1]));
        !_inner_is_matching(graph, &tmp_set)
    })
}

// The provided node is invalid.
create_exception!(retworkx, InvalidNode, PyException);
// Performing this operation would result in trying to add a cycle to a DAG.
create_exception!(retworkx, DAGWouldCycle, PyException);
// There is no edge present between the provided nodes.
create_exception!(retworkx, NoEdgeBetweenNodes, PyException);
// The specified Directed Graph has a cycle and can't be treated as a DAG.
create_exception!(retworkx, DAGHasCycle, PyException);
// No neighbors found matching the provided predicate.
create_exception!(retworkx, NoSuitableNeighbors, PyException);
// Invalid operation on a null graph
create_exception!(retworkx, NullGraph, PyException);
// No path was found between the specified nodes.
create_exception!(retworkx, NoPathFound, PyException);

#[pymodule]
fn retworkx(py: Python<'_>, m: &PyModule) -> PyResult<()> {
    m.add("__version__", env!("CARGO_PKG_VERSION"))?;
    m.add("InvalidNode", py.get_type::<InvalidNode>())?;
    m.add("DAGWouldCycle", py.get_type::<DAGWouldCycle>())?;
    m.add("NoEdgeBetweenNodes", py.get_type::<NoEdgeBetweenNodes>())?;
    m.add("DAGHasCycle", py.get_type::<DAGHasCycle>())?;
    m.add("NoSuitableNeighbors", py.get_type::<NoSuitableNeighbors>())?;
    m.add("NoPathFound", py.get_type::<NoPathFound>())?;
    m.add("NullGraph", py.get_type::<NullGraph>())?;
    m.add_wrapped(wrap_pyfunction!(bfs_successors))?;
    m.add_wrapped(wrap_pyfunction!(dag_longest_path))?;
    m.add_wrapped(wrap_pyfunction!(dag_longest_path_length))?;
    m.add_wrapped(wrap_pyfunction!(number_weakly_connected_components))?;
    m.add_wrapped(wrap_pyfunction!(weakly_connected_components))?;
    m.add_wrapped(wrap_pyfunction!(is_weakly_connected))?;
    m.add_wrapped(wrap_pyfunction!(is_directed_acyclic_graph))?;
    m.add_wrapped(wrap_pyfunction!(is_isomorphic))?;
    m.add_wrapped(wrap_pyfunction!(digraph_union))?;
    m.add_wrapped(wrap_pyfunction!(is_isomorphic_node_match))?;
    m.add_wrapped(wrap_pyfunction!(topological_sort))?;
    m.add_wrapped(wrap_pyfunction!(descendants))?;
    m.add_wrapped(wrap_pyfunction!(ancestors))?;
    m.add_wrapped(wrap_pyfunction!(lexicographical_topological_sort))?;
    m.add_wrapped(wrap_pyfunction!(floyd_warshall))?;
    m.add_wrapped(wrap_pyfunction!(graph_floyd_warshall_numpy))?;
    m.add_wrapped(wrap_pyfunction!(digraph_floyd_warshall_numpy))?;
    m.add_wrapped(wrap_pyfunction!(collect_runs))?;
    m.add_wrapped(wrap_pyfunction!(layers))?;
    m.add_wrapped(wrap_pyfunction!(graph_distance_matrix))?;
    m.add_wrapped(wrap_pyfunction!(digraph_distance_matrix))?;
    m.add_wrapped(wrap_pyfunction!(digraph_adjacency_matrix))?;
    m.add_wrapped(wrap_pyfunction!(graph_adjacency_matrix))?;
    m.add_wrapped(wrap_pyfunction!(graph_all_simple_paths))?;
    m.add_wrapped(wrap_pyfunction!(digraph_all_simple_paths))?;
    m.add_wrapped(wrap_pyfunction!(graph_dijkstra_shortest_paths))?;
    m.add_wrapped(wrap_pyfunction!(digraph_dijkstra_shortest_paths))?;
    m.add_wrapped(wrap_pyfunction!(graph_dijkstra_shortest_path_lengths))?;
    m.add_wrapped(wrap_pyfunction!(digraph_dijkstra_shortest_path_lengths))?;
    m.add_wrapped(wrap_pyfunction!(graph_astar_shortest_path))?;
    m.add_wrapped(wrap_pyfunction!(digraph_astar_shortest_path))?;
    m.add_wrapped(wrap_pyfunction!(graph_greedy_color))?;
    m.add_wrapped(wrap_pyfunction!(directed_gnp_random_graph))?;
    m.add_wrapped(wrap_pyfunction!(undirected_gnp_random_graph))?;
    m.add_wrapped(wrap_pyfunction!(directed_gnm_random_graph))?;
    m.add_wrapped(wrap_pyfunction!(undirected_gnm_random_graph))?;
    m.add_wrapped(wrap_pyfunction!(cycle_basis))?;
    m.add_wrapped(wrap_pyfunction!(strongly_connected_components))?;
    m.add_wrapped(wrap_pyfunction!(digraph_dfs_edges))?;
    m.add_wrapped(wrap_pyfunction!(graph_dfs_edges))?;
    m.add_wrapped(wrap_pyfunction!(digraph_find_cycle))?;
    m.add_wrapped(wrap_pyfunction!(digraph_k_shortest_path_lengths))?;
    m.add_wrapped(wrap_pyfunction!(graph_k_shortest_path_lengths))?;
    m.add_wrapped(wrap_pyfunction!(is_matching))?;
    m.add_wrapped(wrap_pyfunction!(is_maximal_matching))?;
    m.add_wrapped(wrap_pyfunction!(max_weight_matching))?;
    m.add_class::<digraph::PyDiGraph>()?;
    m.add_class::<graph::PyGraph>()?;
    m.add_class::<iterators::BFSSuccessors>()?;
    m.add_class::<iterators::NodeIndices>()?;
    m.add_class::<iterators::EdgeList>()?;
    m.add_class::<iterators::WeightedEdgeList>()?;
    m.add_wrapped(wrap_pymodule!(generators))?;
    Ok(())
}