1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//! Crate retry provides functionality for retrying an operation until its return value satisfies a
//! specific condition.
//!
//! # Usage
//!
//! Retry an operation by calling the `retry` function, supplying a maximum number of times to try,
//! the number of milliseconds to wait after each unsuccessful try, a closure that produces a value,
//! and a closure that takes a reference to that value and returns a boolean indicating the success
//! or failure of the operation. The function will return a `Result` containing either the value
//! that satisfied the condition or an error indicating that a satisfactory value could not be
//! produced.
//!
//! You can also construct a retryable operation incrementally using the `Retry` type. `Retry::new`
//! takes the same two closures as mutable references, and returns a `Retry` value. You can then
//! call the `try` and `wait` methods on this value to add a maximum number of tries and a wait
//! time, respectively. Finally, run the `execute` method to produce the `Result`.
//!
//! If a maximum number of tries is not supplied, the operation will be executed infinitely or until
//! success. If a wait time is not supplied, there will be no wait between attempts.
//!
//! # Failures
//!
//! Retrying will fail when:
//!
//! 1. The operation reaches the maximum number of tries without success.
//! 2. A value of 0 is supplied for the maximum number of tries. It must be at least 1.
//!
//! # Examples
//!
//! Imagine an HTTP API with an endpoint that returns 204 No Content while a job is processing, and
//! eventually 200 OK when the job has completed. Retrying until the job is finished would be
//! written:
//!
//! ```
//! # use retry::retry;
//! # struct Client;
//! # impl Client {
//! #     fn query_job_status(&self) -> Response {
//! #         Response {
//! #             code: 200,
//! #             body: "success",
//! #         }
//! #     }
//! # }
//! # struct Response {
//! #     code: u16,
//! #     body: &'static str,
//! # }
//! # let api_client = Client;
//! match retry(10, 500, || api_client.query_job_status(), |response| response.code == 200) {
//!     Ok(response) => println!("Job completed with result: {}", response.body),
//!     Err(error) => println!("Job completion could not be verified: {}", error),
//! }
//! ```
//!
//!
//! This retries the API call up to 10 times, waiting 500 milliseconds after each unsuccessful
//! attempt. The same result can be achieved by building a `Retry` object incrementally:
//!
//! ```
//! # use retry::Retry;
//! # struct Client;
//! # impl Client {
//! #     fn query_job_status(&self) -> Response {
//! #         Response {
//! #             code: 200,
//! #             body: "success",
//! #         }
//! #     }
//! # }
//! # struct Response {
//! #     code: u16,
//! #     body: &'static str,
//! # }
//! # let api_client = Client;
//! match Retry::new(
//!     &mut || api_client.query_job_status(),
//!     &mut |response| response.code == 200
//! ).try(10).wait(500).execute() {
//!     Ok(response) => println!("Job completed with result: {}", response.body),
//!     Err(error) => println!("Job completion could not be verified: {}", error),
//! }
//! ```

extern crate rand;

use std::error::Error;
use std::fmt::Error as FmtError;
use std::fmt::{Display,Formatter};
use std::thread::sleep;
use std::time::Duration;

use rand::distributions::{IndependentSample, Range};
use rand::thread_rng;

/// Builder object for a retryable operation.
#[derive(Debug)]
pub struct Retry<'a, F: FnMut() -> R + 'a, G: FnMut(&R) -> bool + 'a, R> {
    condition_fn: &'a mut G,
    tries: Option<u64>,
    value_fn: &'a mut F,
    timeout: Option<u64>,
    wait: Wait,
}

impl<'a, F: FnMut() -> R, G: FnMut(&R) -> bool, R> Retry<'a, F, G, R> {
    /// Builds a new `Retry` object.
    pub fn new(
        value_fn: &'a mut F,
        condition_fn: &'a mut G
    ) -> Retry<'a, F, G, R> where F: FnMut() -> R, G: FnMut(&R) -> bool {
        Retry {
            condition_fn: condition_fn,
            tries: None,
            value_fn: value_fn,
            wait: Wait::None,
            timeout: None,
        }
    }

    /// Begins executing the retryable operation.
    pub fn execute(self) -> Result<R, RetryError> {
        if self.tries.is_some() && self.tries.unwrap() == 0 {
            return Err(RetryError { message: "tries must be non-zero" });
        }

        let mut try = 0;

        loop {
            if self.tries.is_some() && self.tries.unwrap() == try {
                return Err(RetryError { message: "reached last try without condition match" })
            }

            let value = (self.value_fn)();

            if (self.condition_fn)(&value) {
                return Ok(value);
            }

            match self.wait {
                Wait::Exponential(multiplier) => {
                    let multiplier = multiplier + (try as f64);
                    sleep(Duration::from_millis(multiplier.exp() as u64));
                },
                Wait::Fixed(ms) => sleep(Duration::from_millis(ms)),
                Wait::None => {},
                Wait::Range(min, max) => {
                    let range = Range::new(min, max);
                    let mut rng = thread_rng();
                    sleep(Duration::from_millis(range.ind_sample(&mut rng)));
                },
            }

            try += 1;
        }
    }

    /// Sets the maximum number of milliseconds retries will be made before failing.
    pub fn timeout(mut self, max: u64) -> Retry<'a, F, G, R> {
        self.timeout = Some(max);

        self
    }

    /// Sets the maximum number of tries to make before failing.
    pub fn try(mut self, tries: u64) -> Retry<'a, F, G, R> {
        self.tries = Some(tries);

        self
    }

    /// Sets the number of milliseconds to wait between tries.
    ///
    /// Mutually exclusive with `wait_between` and `wait_exponentially`.
    pub fn wait(mut self, wait: u64) -> Retry<'a, F, G, R> {
        self.wait = Wait::Fixed(wait);

        self
    }

    /// Sets a range for a randomly chosen number of milliseconds to wait between tries. A new
    /// random value from the range is chosen for each try.
    ///
    /// Mutually exclusive with `wait` and `wait_exponentially`.
    pub fn wait_between(mut self, min: u64, max: u64) -> Retry<'a, F, G, R> {
        self.wait = Wait::Range(min, max);

        self
    }

    /// Sets a multiplier in milliseconds to use in exponential backoff between tries.
    ///
    /// Mutually exclusive with `wait` and `wait_between`.
    pub fn wait_exponentially(mut self, multiplier: f64) -> Retry<'a, F, G, R> {
        self.wait = Wait::Exponential(multiplier);

        self
    }
}

#[derive(Debug)]
enum Wait {
    Exponential(f64),
    Fixed(u64),
    None,
    Range(u64, u64),
}

/// Invokes a function a certain number of times or until a condition is satisfied with a fixed
/// wait after each unsuccessful try.
pub fn retry<F, G, R>(
    tries: u64,
    wait: u64,
    mut value_fn: F,
    mut condition_fn: G
) -> Result<R, RetryError> where F: FnMut() -> R, G: FnMut(&R) -> bool {
    Retry::new(&mut value_fn, &mut condition_fn).try(tries).wait(wait).execute()
}

/// Invokes a function a certain number of times or until a condition is satisfied
/// with an exponential backoff after each unsuccessful try.
pub fn retry_exponentially<F, G, R>(
    tries: u64,
    wait: f64,
    mut value_fn: F,
    mut condition_fn: G
) -> Result<R, RetryError> where F: FnMut() -> R, G: FnMut(&R) -> bool {
    Retry::new(&mut value_fn, &mut condition_fn).try(tries).wait_exponentially(wait).execute()
}

/// An error indicating that a retry call failed.
#[derive(Debug)]
pub struct RetryError {
    message: &'static str
}

impl Display for RetryError {
    fn fmt(&self, formatter: &mut Formatter) -> Result<(), FmtError> {
        write!(formatter, "{}", self.message)
    }
}

impl Error for RetryError {
    fn description(&self) -> &str {
        self.message
    }
}

#[cfg(test)]
mod tests {
    use super::{Retry, retry, retry_exponentially};

    #[test]
    fn succeeds_without_try_count() {
        let mut collection = vec![1, 2, 3, 4, 5].into_iter();

        let value = Retry::new(
            &mut || collection.next().unwrap(),
            &mut |value| *value == 5
        ).execute().unwrap();

        assert_eq!(value, 5);
    }

    #[test]
    fn succeeds_on_first_try() {
        let value = Retry::new(&mut || 1, &mut |value| *value == 1).try(1).execute().ok().unwrap();

        assert_eq!(value, 1);
    }

    #[test]
    fn requires_non_zero_tries() {
        let error = Retry::new(&mut || 1, &mut |value| *value == 1).try(0).execute().err().unwrap();

        assert_eq!(error.message, "tries must be non-zero");
    }

    #[test]
    fn succeeds_on_subsequent_try() {
        let mut collection = vec![1, 2].into_iter();

        let value = Retry::new(
            &mut || collection.next().unwrap(),
            &mut |value| *value == 2
        ).try(2).execute().ok().unwrap();

        assert_eq!(value, 2);
    }

    #[test]
    fn fails_after_last_try() {
        let mut collection = vec![1].into_iter();

        let error = Retry::new(
            &mut || collection.next().unwrap(),
            &mut |value| *value == 2
        ).try(1).execute().err().unwrap();

        assert_eq!(error.message, "reached last try without condition match");
    }

    #[test]
    fn sets_custom_wait_time() {
        let mut collection = vec![1, 2].into_iter();

        let value = Retry::new(
            &mut || collection.next().unwrap(),
            &mut |value| *value == 2
        ).wait(1).execute().ok().unwrap();

        assert_eq!(value, 2);
    }

    #[test]
    fn sets_wait_exponentially() {
        let mut collection = vec![1, 2].into_iter();

        let value = Retry::new(
            &mut || collection.next().unwrap(),
            &mut |value| *value == 2
        ).wait_exponentially(1_f64).execute().ok().unwrap();

        assert_eq!(value, 2);
    }

    #[test]
    fn retry_function() {
        let mut collection = vec![1, 2].into_iter();

        let value = retry(2, 0, || collection.next().unwrap(), |value| *value == 2).ok().unwrap();

        assert_eq!(value, 2);
    }

    #[test]
    fn retry_exponentially_function() {
        let mut collection = vec![1, 2].into_iter();

        let value = retry_exponentially(2, 0_f64, || collection.next().unwrap(), |value| *value == 2).ok().unwrap();

        assert_eq!(value, 2);
    }
}