1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
//! Retroimg processing library.
//! 
//! Convert images to appear to be displayed on retro IBM hardware.
//! It can also be used to reduce the color depth of existing images
//! for use in DOS game development.
//! 
//! See the various functions in this module
//! (and the submodule [`color`])
//! for more information.
use image::imageops::{resize, FilterType};
use image::{GenericImage, ImageBuffer, Pixel, RgbImage};
use num_rational::Ratio;
use snafu::Snafu;

pub mod color;

pub use crate::color::{ColorDepth, FixedPalette};

/// This is just another name for a cubic resize.
/// 
/// Prefer using small values of `nwidth` and `nheight`.
pub fn reduce<I: 'static>(
    img: &I,
    nwidth: u32,
    nheight: u32,
) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where
    I: GenericImage,
{
    resize(img, nwidth, nheight, FilterType::CatmullRom)
}

/// Crop an image to the given borders.
pub fn crop(mut image: RgbImage, left: u32, top: u32, width: u32, height: u32) -> RgbImage {
    image::imageops::crop(&mut image, left, top, width, height).to_image()
}

/// This is just another name for a nearest neighbor resize.
/// 
/// Makes it look like it has nice, large pixels.
pub fn expand<I: 'static>(
    img: &I,
    nwidth: u32,
    nheight: u32,
) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>>
where
    I: GenericImage,
{
    resize(img, nwidth, nheight, FilterType::Nearest)
}

/// An error returned by [`resolve_output_resolution`].
#[derive(Debug, Snafu)]
#[snafu(visibility(pub))]
pub enum ResolutionError {
    /// not enough components to resolve output resolution
    Non,
    /// 'width' or 'height' are required alongside 'pixel_ratio'
    RatioWithoutSide,
    /// 'pixel_ratio', 'width' and 'height' cannot be used together
    TooMany,
}

/// Identify the intended output resolution based on a combination
/// of the input resolution, the desired output dimensions,
/// and/or the pixel ratio.
///
/// Only the following combinations of are valid:
/// 
/// - `output_width` and `output_height`;
/// - `pixel_ratio` and `output_width`;
/// - `pixel_ratio` and `output_height`.
pub fn resolve_output_resolution(
    width: u32,
    height: u32,
    output_width: Option<u32>,
    output_height: Option<u32>,
    pixel_ratio: Option<Ratio<u32>>,
) -> Result<(u32, u32), ResolutionError> {
    match (pixel_ratio, output_width, output_height) {
        (None, None, None) => NonSnafu.fail(),
        (None, Some(w), Some(h)) => Ok((w, h)),
        (Some(r), None, Some(h)) => {
            /*
            Rule of proportions... with a twist.

            iW ----> oW

            iH ----> oH

            Without pixel scale correction (pixel ratio `r` = 1):

            oH = iH * oW / iW = oW / iR
            oW = iW * oH / iH = oH * iR

            For other pixel ratios:

            oR = iR * r

            Therefore:

            oW = oH * oR
               = oH * iR * r
               = oH * r * iW / iH

            and

            oH = oW / oR
               = oW / (iR * r)
               = oW / ( (iW / iH) * r)
               = oW * iH / (iW * r)
            */
            let w = ((r * h * width) / height).round().to_integer();
            Ok((w, h))
        }
        (Some(r), Some(w), None) => {
            let h = (Ratio::from_integer(w) * height / (r * width))
                .round()
                .to_integer();
            Ok((w, h))
        }
        (None, None, Some(h)) => {
            let ir = Ratio::new(width, height);
            let w = (Ratio::from_integer(h) * ir).round().to_integer();
            Ok((w, h))
        }
        (None, Some(w), None) => {
            let ir = Ratio::new(width, height);
            let h = (Ratio::from_integer(w) / ir).round().to_integer();
            Ok((w, h))
        }
        (Some(_r), None, None) => RatioWithoutSideSnafu.fail(),
        (Some(_r), Some(_w), Some(_h)) => TooManySnafu.fail(),
    }
}

#[cfg(test)]
mod tests {

    #[test]
    fn test_crop() {
        // create blank image
        let mut image = image::ImageBuffer::new(100, 100);

        // draw a red horizontal line
        for x in 0..100 {
            image.put_pixel(x, 50, image::Rgb([255, 0, 0]));
        }

        // draw a green vertical line
        for y in 0..100 {
            image.put_pixel(20, y, image::Rgb([0, 255, 0]));
        }

        // draw yellow in the intersection
        image.put_pixel(20, 50, image::Rgb([255, 255, 0]));

        // crop to the middle of the image
        let cropped = super::crop(image, 20, 50, 80, 50);

        // check that the cropped image is the right size
        assert_eq!(cropped.width(), 80, "unexpected width");
        assert_eq!(cropped.height(), 50, "unexpected height");

        // check that the cropped image is the right color
        for (x, y, pixel) in cropped.enumerate_pixels() {
            let expected_color = match (x, y) {
                (0, 0) => image::Rgb([255, 255, 0]),
                (0, _) => image::Rgb([0, 255, 0]),
                (_, 0) => image::Rgb([255, 0, 0]),
                _ => image::Rgb([0, 0, 0]),
            };
            assert_eq!(pixel, &expected_color);
        }
    }
}