1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

//! 2D geometric primitives.

use std::{cmp, f64, fmt};

use usvg;
pub use usvg::{Rect, Size};


/// Bounds `f64` number.
#[inline]
pub(crate) fn f64_bound(min: f64, val: f64, max: f64) -> f64 {
    debug_assert!(min.is_finite());
    debug_assert!(val.is_finite());
    debug_assert!(max.is_finite());

    if val > max {
        return max;
    } else if val < min {
        return min;
    }

    val
}


/// A 2D screen size representation.
///
/// Width and height are guarantee to be > 0.
#[allow(missing_docs)]
#[derive(Clone, Copy, PartialEq)]
pub struct ScreenSize {
    width: u32,
    height: u32,
}

impl ScreenSize {
    /// Creates a new `ScreenSize` from values.
    #[inline]
    pub fn new(width: u32, height: u32) -> Option<Self> {
        if width > 0 && height > 0 {
            Some(ScreenSize { width, height })
        } else {
            None
        }
    }

    /// Returns width.
    #[inline]
    pub fn width(&self) -> u32 {
        self.width
    }

    /// Returns height.
    #[inline]
    pub fn height(&self) -> u32 {
        self.height
    }

    /// Returns width and height as a tuple.
    #[inline]
    pub fn dimensions(&self) -> (u32, u32) {
        (self.width, self.height)
    }

    /// Scales current size to specified size.
    #[inline]
    pub fn scale_to(&self, to: Self) -> Self {
        size_scale(*self, to, false)
    }

    /// Expands current size to specified size.
    #[inline]
    pub fn expand_to(&self, to: Self) -> Self {
        size_scale(*self, to, true)
    }

    /// Converts the current `ScreenSize` to `Size`.
    #[inline]
    pub fn to_size(&self) -> Size {
        // Can't fail, because `ScreenSize` is always valid.
        Size::new(self.width as f64, self.height as f64).unwrap()
    }
}

impl fmt::Debug for ScreenSize {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ScreenSize({} {})", self.width, self.height)
    }
}

impl fmt::Display for ScreenSize {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self)
    }
}


/// Additional `Size` methods.
pub trait SizeExt {
    /// Converts `Size` to `ScreenSize`.
    fn to_screen_size(&self) -> ScreenSize;
}

impl SizeExt for Size {
    #[inline]
    fn to_screen_size(&self) -> ScreenSize {
        ScreenSize::new(
            cmp::max(1, self.width().round() as u32),
            cmp::max(1, self.height().round() as u32),
        ).unwrap()
    }
}

fn size_scale(
    s1: ScreenSize,
    s2: ScreenSize,
    expand: bool,
) -> ScreenSize {
    let rw = (s2.height as f64 * s1.width as f64 / s1.height as f64).ceil() as u32;
    let with_h = if expand { rw <= s2.width } else { rw >= s2.width };
    if !with_h {
        ScreenSize::new(rw, s2.height).unwrap()
    } else {
        let h = (s2.width as f64 * s1.height as f64 / s1.width as f64).ceil() as u32;
        ScreenSize::new(s2.width, h).unwrap()
    }
}


/// Additional `Rect` methods.
pub trait RectExt: Sized {
    /// Transforms the `Rect` using the provided `bbox`.
    fn bbox_transform(&self, bbox: Rect) -> Self;

    /// Transforms the `Rect` using the provided `Transform`.
    ///
    /// This method is expensive.
    fn transform(&self, ts: &usvg::Transform) -> Option<Self>;

    /// Returns rect's size in screen units.
    fn to_screen_size(&self) -> ScreenSize;

    /// Returns rect in screen units.
    fn to_screen_rect(&self) -> ScreenRect;
}

impl RectExt for Rect {
    fn bbox_transform(&self, bbox: Rect) -> Self {
        let x = self.x() * bbox.width() + bbox.x();
        let y = self.y() * bbox.height() + bbox.y();
        let w = self.width() * bbox.width();
        let h = self.height() * bbox.height();
        Rect::new(x, y, w, h).unwrap()
    }

    fn transform(&self, ts: &usvg::Transform) -> Option<Self> {
        if !ts.is_default() {
            let path = &[
                usvg::PathSegment::MoveTo {
                    x: self.x(), y: self.y()
                },
                usvg::PathSegment::LineTo {
                    x: self.right(), y: self.y()
                },
                usvg::PathSegment::LineTo {
                    x: self.right(), y: self.bottom()
                },
                usvg::PathSegment::LineTo {
                    x: self.x(), y: self.bottom()
                },
                usvg::PathSegment::ClosePath,
            ];

            usvg::SubPathData(path).bbox_with_transform(*ts, None)
        } else {
            Some(*self)
        }
    }

    #[inline]
    fn to_screen_size(&self) -> ScreenSize {
        self.size().to_screen_size()
    }

    #[inline]
    fn to_screen_rect(&self) -> ScreenRect {
        ScreenRect::new(
            self.x() as i32,
            self.y() as i32,
            cmp::max(1, self.width().round() as u32),
            cmp::max(1, self.height().round() as u32),
        ).unwrap()
    }
}


/// A 2D screen rect representation.
///
/// Width and height are guarantee to be > 0.
#[allow(missing_docs)]
#[derive(Clone, Copy, PartialEq)]
pub struct ScreenRect {
    x: i32,
    y: i32,
    width: u32,
    height: u32,
}

impl ScreenRect {
    /// Creates a new `Rect` from values.
    #[inline]
    pub fn new(x: i32, y: i32, width: u32, height: u32) -> Option<Self> {
        if width > 0 && height > 0 {
            Some(ScreenRect { x, y, width, height })
        } else {
            None
        }
    }

    /// Returns rect's size.
    #[inline]
    pub fn size(&self) -> ScreenSize {
        // Can't fail, because `ScreenSize` is always valid.
        ScreenSize::new(self.width, self.height).unwrap()
    }

    /// Returns rect's X position.
    #[inline]
    pub fn x(&self) -> i32 {
        self.x
    }

    /// Returns rect's Y position.
    #[inline]
    pub fn y(&self) -> i32 {
        self.y
    }

    /// Returns rect's width.
    #[inline]
    pub fn width(&self) -> u32 {
        self.width
    }

    /// Returns rect's height.
    #[inline]
    pub fn height(&self) -> u32 {
        self.height
    }

    /// Returns rect's left edge position.
    #[inline]
    pub fn left(&self) -> i32 {
        self.x
    }

    /// Returns rect's right edge position.
    #[inline]
    pub fn right(&self) -> i32 {
        self.x + self.width as i32
    }

    /// Returns rect's top edge position.
    #[inline]
    pub fn top(&self) -> i32 {
        self.y
    }

    /// Returns rect's bottom edge position.
    #[inline]
    pub fn bottom(&self) -> i32 {
        self.y + self.height as i32
    }

    /// Translates the rect by the specified offset.
    #[inline]
    pub fn translate(&self, tx: i32, ty: i32) -> Self {
        ScreenRect {
            x: self.x + tx,
            y: self.y + ty,
            width: self.width,
            height: self.height,
        }
    }

    /// Translates the rect to the specified position.
    #[inline]
    pub fn translate_to(&self, x: i32, y: i32) -> Self {
        ScreenRect {
            x,
            y,
            width: self.width,
            height: self.height,
        }
    }

    /// Checks that rect contains a point.
    #[inline]
    pub fn contains(&self, x: i32, y: i32) -> bool {
        if x < self.x || x > self.x + self.width as i32 - 1 {
            return false;
        }

        if y < self.y || y > self.y + self.height as i32 - 1 {
            return false;
        }

        true
    }

    /// Fits the current rect into the specified bounds.
    #[inline]
    pub fn fit_to_rect(&self, bounds: ScreenRect) -> Self {
        let mut r = *self;

        if r.x < 0 { r.x = 0; }
        if r.y < 0 { r.y = 0; }

        if r.right() > bounds.width as i32 {
            r.width = cmp::max(1, bounds.width as i32 - r.x) as u32;
        }

        if r.bottom() > bounds.height as i32 {
            r.height = cmp::max(1, bounds.height as i32 - r.y) as u32;
        }

        r
    }

    /// Converts into `Rect`.
    #[inline]
    pub fn to_rect(&self) -> Rect {
        // Can't fail, because `ScreenRect` is always valid.
        Rect::new(self.x as f64, self.y as f64, self.width as f64, self.height as f64).unwrap()
    }
}

impl fmt::Debug for ScreenRect {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "ScreenRect({} {} {} {})", self.x, self.y, self.width, self.height)
    }
}

impl fmt::Display for ScreenRect {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{:?}", self)
    }
}


#[cfg(test)]
mod tests {
    use super::*;
    use usvg::FuzzyEq;

    #[test]
    fn bbox_transform_1() {
        let r = Rect::new(10.0, 20.0, 30.0, 40.0).unwrap();
        assert!(r.bbox_transform(Rect::new(0.2, 0.3, 0.4, 0.5).unwrap())
                 .fuzzy_eq(&Rect::new(4.2, 10.3, 12.0, 20.0).unwrap()));
    }
}