1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
//! A library for converting between MUTF-8 and UTF-8.
//!
//! MUTF-8 is the same as CESU-8 except for its handling of embedded null
//! characters. This library builds on top of the residua-cesu8 crate found
//! [here][residua-cesu8].
//!
//! [residua-cesu8]: https://github.com/residua/cesu8
//!
//! ```
//! use std::borrow::Cow;
//! use mutf8::{to_mutf8, from_mutf8};
//!
//! let str = "Hello, world!";
//! // 16-bit Unicode characters are the same in UTF-8 and MUTF-8:
//! assert_eq!(to_mutf8(str), Cow::Borrowed(str.as_bytes()));
//! assert_eq!(from_mutf8(str.as_bytes()), Cow::Borrowed(str));
//!
//! let str = "\u{10401}";
//! let mutf8_data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81];
//! // 'mutf8_data' is a byte slice containing a 6-byte surrogate pair which
//! // becomes a 4-byte UTF-8 character.
//! assert_eq!(from_mutf8(mutf8_data), Cow::Borrowed(str));
//!
//! let str = "\0";
//! let mutf8_data = &[0xC0, 0x80];
//! // 'str' is a null character which becomes a two-byte MUTF-8 representation.
//! assert_eq!(to_mutf8(str), Cow::Borrowed(mutf8_data))
//! ```

use std::borrow::Cow;
use std::str::from_utf8;

use cesu8::{cesu8_len, from_cesu8, is_valid_cesu8, to_cesu8};

/// Converts a slice of bytes to a string slice.
///
/// First, if the slice of bytes is already valid UTF-8, this function is
/// functionally no different than `std::str::from_utf8`; this means that
/// `decode()` does not need to perform any further operations and doesn't need
/// to allocate additional memory.
///
/// If the slice of bytes is not valid UTF-8, `decode()` works on the assumption
/// that the slice of bytes, if not valid UTF-8, is valid MUTF-8. It will then
/// decode the bytes given to it and return the newly constructed string slice.
///
/// If the slice of bytes is found not to be valid MUTF-8 data, `decode()`
/// returns `Err(DecodingError)` to signify that an error has occured.
///
/// # Panics
///
/// Panics if the slice of bytes is found not to be valid MUTF-8 data.
///
/// # Examples
///
/// ```
/// use std::borrow::Cow;
/// use mutf8::from_mutf8;
///
/// let str = "Hello, world!";
/// // Since 'str' contains valid UTF-8 and MUTF-8 data, 'from_mutf8' can
/// // decode the string slice without allocating memory.
/// assert_eq!(from_mutf8(str.as_bytes()), Cow::Borrowed(str));
///
/// let str = "\u{10401}";
/// let mutf8_data = &[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81];
/// // 'mutf8_data' is a byte slice containing a 6-byte surrogate pair which
/// // becomes the 4-byte UTF-8 character 'str'.
/// assert_eq!(from_mutf8(mutf8_data), Cow::Borrowed(str));
///
/// let str = "\0";
/// let mutf8_data = &[0xC0, 0x80];
/// // 'mutf8_data' is a byte slice containing MUTF-8 data containing a null
/// // code point which becomes a null character.
/// assert_eq!(from_mutf8(mutf8_data), Cow::Borrowed(str));
/// ```
pub fn from_mutf8(bytes: &[u8]) -> Cow<str> {
    if let Ok(str) = from_utf8(bytes) {
        return Cow::Borrowed(str);
    }

    macro_rules! err {
        () => {{
            panic!("invalid MUTF-8 data");
        }};
    }

    let mut decoded = Vec::with_capacity(bytes.len());
    let mut iter = bytes.iter();
    while let Some(&byte) = iter.next() {
        let value = if byte == NULL_PAIR[0] {
            match iter.next() {
                Some(&byte) => {
                    if byte != NULL_PAIR[1] {
                        err!()
                    }
                }
                _ => err!(),
            }
            NULL_CODE_POINT
        } else {
            byte
        };
        decoded.push(value);
    }

    // TODO: fix possibly confusing panic message?
    Cow::Owned(from_cesu8(&decoded).to_string())
}

/// Converts a string slice to MUTF-8 bytes.
///
/// If the string slice's representation in MUTF-8 would be identical to its
/// present UTF-8 representation, this function is functionally no different
/// than `(&str).as_bytes()`; this means that `encode()` does not need to
/// perform any further operations and doesn't need to allocate any additional
/// memory.
///
/// If the string slice's representation in UTF-8 is not equivalent in MUTF-8,
/// `encode()` encodes the string slice to its MUTF-8 representation as a slice
/// of bytes.
///
/// ```
/// use std::borrow::Cow;
/// use mutf8::to_mutf8;
///
/// let str = "Hello, world!";
/// // Since 'str' contains valid UTF-8 and MUTF-8 data, 'to_mutf8' can
/// // encode data without allocating memory.
/// assert_eq!(to_mutf8(str), Cow::Borrowed(str.as_bytes()));
///
/// let str = "\u{10401}";
/// let mutf8_data = Cow::Borrowed(&[0xED, 0xA0, 0x81, 0xED, 0xB0, 0x81]);
/// // 'str' is a 4-byte UTF-8 character, which becomes the 6-byte MUTF-8
/// // surrogate pair 'mutf8_data'.
/// assert_eq!(to_mutf8(str), mutf8_data);
///
/// let str = "\0";
/// let mutf8_data = Cow::Borrowed(&[0xC0, 0x80]);
/// // 'str' is a null character which becomes a two byte representation in
/// // MUTF-8.
/// assert_eq!(to_mutf8(str), mutf8_data);
/// ```
pub fn to_mutf8(s: &str) -> Cow<[u8]> {
    if is_valid_mutf8(s) {
        return Cow::Borrowed(s.as_bytes());
    }

    let mut encoded = Vec::with_capacity(mutf8_len(s));

    for &byte in to_cesu8(s).iter() {
        if byte == NULL_CODE_POINT {
            encoded.extend_from_slice(&NULL_PAIR);
        } else {
            encoded.push(byte);
        }
    }

    Cow::Owned(encoded)
}

/// The pair of bytes the null code point (`0x00`) is represented by in MUTF-8.
const NULL_PAIR: [u8; 2] = [0xC0, 0x80];

/// Given a string slice, this function returns how many bytes in MUTF-8 are
/// required to encode the string slice.
pub fn mutf8_len(s: &str) -> usize {
    let mut len = cesu8_len(s);
    s.as_bytes().iter().for_each(|&b| {
        if b == NULL_CODE_POINT {
            len += 1
        }
    });
    len
}

/// Returns `true` if a string slice contains UTF-8 data that is also valid
/// MUTF-8. This is mainly used in testing if a string slice needs to be
/// explicitly encoded using [`to_mutf8`].
///
/// If `is_valid_mutf8()` returns `false`, it implies that
/// [`&str.as_bytes()`](str::as_bytes) is directly equivalent to the string
/// slice's MUTF-8 representation.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use mutf8::is_valid_mutf8;
///
/// // Code points below U+10400 encoded in UTF-8 IS valid MUTF-8.
/// assert!(is_valid_mutf8("Hello, world!"));
///
/// // Any code point above U+10400 encoded in UTF-8 IS NOT valid MUTF-8.
/// assert!(!is_valid_mutf8("\u{10400}"));
///
/// // The use of a null character IS NOT valid MUTF-8.
/// assert!(!is_valid_mutf8("\0"));
/// ```
pub fn is_valid_mutf8(s: &str) -> bool {
    !s.contains(NULL_CHAR) && is_valid_cesu8(s)
}

const NULL_CODE_POINT: u8 = 0x00;
const NULL_CHAR: char = '\0';