1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
use fnv::FnvHashMap;
use futures_util::future::OptionFuture;
use glam::{Mat3, Mat4, Vec2, Vec3, Vec4, Vec4Swizzles};
use rend3::{
    datatypes as dt,
    datatypes::{AffineTransform, MeshBuilder},
    Renderer,
};
use std::future::Future;
use thiserror::Error;

#[derive(Debug)]
pub struct MeshPrimitive {
    pub handle: dt::MeshHandle,
    pub material: Option<usize>,
}

#[derive(Debug)]
pub struct Mesh {
    pub primitives: Vec<MeshPrimitive>,
}

#[derive(Debug)]
pub struct Node {
    pub children: Vec<Node>,
    pub local_transform: Mat4,
    pub objects: Vec<dt::ObjectHandle>,
    pub light: Option<dt::DirectionalLightHandle>,
}

#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct ImageKey {
    pub index: usize,
    pub srgb: bool,
}

#[derive(Debug, Default)]
pub struct LoadedGltfScene {
    pub meshes: FnvHashMap<usize, Mesh>,
    pub materials: FnvHashMap<Option<usize>, dt::MaterialHandle>,
    pub images: FnvHashMap<ImageKey, dt::TextureHandle>,
    pub nodes: Vec<Node>,
}

#[derive(Debug, Error)]
pub enum GltfLoadError {
    #[error("Gltf parsing or validation error")]
    Gltf(#[from] gltf::Error),
    #[error("Texture {0} failed to be loaded from the fs")]
    TextureIo(String, #[source] async_std::io::Error),
    #[error("Texture {0} failed to be loaded as an image")]
    TextureLoad(String, #[source] image::ImageError),
    #[error("Gltf file must have at least one scene")]
    MissingScene,
    #[error("Mesh {0} does not have positions")]
    MissingPositions(usize),
    #[error("Gltf file references mesh {0} but mesh does not exist")]
    MissingMesh(usize),
    #[error("Gltf file references material {0} but material does not exist")]
    MissingMaterial(usize),
    #[error("Mesh {0} primitive {1} uses unsupported mode {2:?}. Only triangles are supported.")]
    UnsupportedPrimitiveMode(usize, usize, gltf::mesh::Mode),
}

pub async fn load_gltf<TLD, F, Fut>(
    renderer: &Renderer<TLD>,
    data: &[u8],
    binary: &[u8],
    mut texture_func: F,
) -> Result<LoadedGltfScene, GltfLoadError>
where
    TLD: 'static,
    F: FnMut(&str) -> Fut,
    Fut: Future<Output = Result<Vec<u8>, async_std::io::Error>>,
{
    let file = gltf::Gltf::from_slice_without_validation(data)?;

    let mut loaded = LoadedGltfScene::default();
    load_meshes(renderer, &mut loaded, file.meshes(), binary)?;
    load_default_material(renderer, &mut loaded);
    load_materials_and_textures(renderer, &mut loaded, file.materials(), &mut texture_func).await?;

    let scene = file
        .default_scene()
        .or_else(|| file.scenes().next())
        .ok_or(GltfLoadError::MissingScene)?;

    loaded.nodes = load_gltf_impl(
        renderer,
        &mut loaded,
        scene.nodes(),
        Mat4::from_scale(Vec3::new(1.0, 1.0, -1.0)),
    )?;

    Ok(loaded)
}

fn load_gltf_impl<'a, TLD>(
    renderer: &Renderer<TLD>,
    loaded: &mut LoadedGltfScene,
    nodes: impl Iterator<Item = gltf::Node<'a>>,
    parent_transform: Mat4,
) -> Result<Vec<Node>, GltfLoadError>
where
    TLD: 'static,
{
    let mut final_nodes = Vec::new();
    for node in nodes {
        let local_transform = Mat4::from_cols_array_2d(&node.transform().matrix());
        let transform = parent_transform * local_transform;

        let mut objects = Vec::new();
        if let Some(mesh) = node.mesh() {
            let mesh_handle = loaded
                .meshes
                .get(&mesh.index())
                .ok_or_else(|| GltfLoadError::MissingMesh(mesh.index()))?;
            for prim in &mesh_handle.primitives {
                let mat_idx = prim.material;
                let mat = loaded
                    .materials
                    .get(&mat_idx)
                    .ok_or_else(|| GltfLoadError::MissingMaterial(mat_idx.expect("Could not find default material")))?;
                let object_handle = renderer.add_object(dt::Object {
                    mesh: prim.handle,
                    material: *mat,
                    transform: AffineTransform { transform },
                });
                objects.push(object_handle);
            }
        }

        let light = if let Some(light) = node.light() {
            match light.kind() {
                gltf::khr_lights_punctual::Kind::Directional => {
                    let direction = (transform * (-Vec3::Z).extend(1.0)).xyz();
                    Some(renderer.add_directional_light(dt::DirectionalLight {
                        color: Vec3::from(light.color()),
                        intensity: light.intensity(),
                        direction,
                    }))
                }
                _ => None,
            }
        } else {
            None
        };

        let children = load_gltf_impl(renderer, loaded, node.children(), transform)?;

        final_nodes.push(Node {
            children,
            local_transform,
            objects,
            light,
        })
    }
    Ok(final_nodes)
}

fn load_meshes<'a, TLD>(
    renderer: &Renderer<TLD>,
    loaded: &mut LoadedGltfScene,
    meshes: impl Iterator<Item = gltf::Mesh<'a>>,
    binary: &[u8],
) -> Result<(), GltfLoadError>
where
    TLD: 'static,
{
    for mesh in meshes {
        let mut res_prims = Vec::new();
        for prim in mesh.primitives() {
            if prim.mode() != gltf::mesh::Mode::Triangles {
                return Err(GltfLoadError::UnsupportedPrimitiveMode(
                    mesh.index(),
                    prim.index(),
                    prim.mode(),
                ));
            }

            let reader = prim.reader(|b| {
                if b.index() != 0 {
                    return None;
                }
                Some(&binary[..b.length()])
            });

            let vertex_positions: Vec<_> = reader
                .read_positions()
                .ok_or_else(|| GltfLoadError::MissingPositions(mesh.index()))?
                .map(Vec3::from)
                .collect();

            // glTF models are right handed, so we must flip their winding order
            let mut builder = MeshBuilder::new(vertex_positions).with_right_handed();

            if let Some(normals) = reader.read_normals() {
                builder = builder.with_vertex_normals(normals.map(Vec3::from).collect())
            }

            if let Some(tangents) = reader.read_tangents() {
                // todo: handedness
                builder = builder.with_vertex_tangents(tangents.map(|[x, y, z, _]| Vec3::new(x, y, z)).collect())
            }

            if let Some(uvs) = reader.read_tex_coords(0) {
                builder = builder.with_vertex_uvs(uvs.into_f32().map(Vec2::from).collect())
            }

            if let Some(colors) = reader.read_colors(0) {
                builder = builder.with_vertex_colors(colors.into_rgba_u8().collect())
            }

            if let Some(indices) = reader.read_indices() {
                builder = builder.with_indices(indices.into_u32().collect())
            }

            let mesh = builder.build();

            let handle = renderer.add_mesh(mesh);

            res_prims.push(MeshPrimitive {
                handle,
                material: prim.material().index(),
            })
        }
        loaded.meshes.insert(mesh.index(), Mesh { primitives: res_prims });
    }

    Ok(())
}

fn load_default_material<TLD>(renderer: &Renderer<TLD>, loaded: &mut LoadedGltfScene) {
    loaded.materials.insert(
        None,
        renderer.add_material(dt::Material {
            albedo: dt::AlbedoComponent::Value(Vec4::splat(1.0)),
            normal: dt::NormalTexture::None,
            aomr_textures: dt::AoMRTextures::None,
            ao_factor: Some(1.0),
            metallic_factor: Some(1.0),
            roughness_factor: Some(1.0),
            clearcoat_textures: dt::ClearcoatTextures::None,
            clearcoat_factor: Some(1.0),
            clearcoat_roughness_factor: Some(1.0),
            emissive: dt::MaterialComponent::None,
            reflectance: dt::MaterialComponent::None,
            anisotropy: dt::MaterialComponent::None,
            alpha_cutout: None,
            transform: Mat3::IDENTITY,
            unlit: false,
            nearest: false,
        }),
    );
}

async fn load_materials_and_textures<'a, TLD, F, Fut>(
    renderer: &Renderer<TLD>,
    loaded: &mut LoadedGltfScene,
    materials: impl Iterator<Item = gltf::Material<'a>>,
    texture_func: &mut F,
) -> Result<(), GltfLoadError>
where
    TLD: 'static,
    F: FnMut(&str) -> Fut,
    Fut: Future<Output = Result<Vec<u8>, async_std::io::Error>>,
{
    for material in materials {
        let pbr = material.pbr_metallic_roughness();
        let albedo = pbr.base_color_texture();
        let albedo_factor = pbr.base_color_factor();
        let occlusion = material.occlusion_texture();
        let emissive = material.emissive_texture();
        let emissive_factor = material.emissive_factor();
        let normals = material.normal_texture();
        let roughness_factor = pbr.roughness_factor();
        let metallic_factor = pbr.metallic_factor();
        let metallic_roughness = pbr.metallic_roughness_texture();

        let nearest = albedo
            .as_ref()
            .map(|i| i.texture().sampler().mag_filter() == Some(gltf::texture::MagFilter::Nearest))
            .unwrap_or_default();

        let albedo_tex =
            OptionFuture::from(albedo.map(|i| load_image(renderer, loaded, i.texture().source(), true, texture_func)))
                .await
                .transpose()?;
        let occlusion_tex = OptionFuture::from(
            occlusion.map(|i| load_image(renderer, loaded, i.texture().source(), false, texture_func)),
        )
        .await
        .transpose()?;
        let emissive_tex = OptionFuture::from(
            emissive.map(|i| load_image(renderer, loaded, i.texture().source(), true, texture_func)),
        )
        .await
        .transpose()?;
        let normals_tex = OptionFuture::from(
            normals.map(|i| load_image(renderer, loaded, i.texture().source(), false, texture_func)),
        )
        .await
        .transpose()?;
        let metallic_roughness_tex = OptionFuture::from(
            metallic_roughness.map(|i| load_image(renderer, loaded, i.texture().source(), false, texture_func)),
        )
        .await
        .transpose()?;

        let handle = renderer.add_material(dt::Material {
            albedo: match albedo_tex {
                Some(tex) => dt::AlbedoComponent::TextureValue {
                    handle: tex,
                    value: Vec4::from(albedo_factor),
                },
                None => dt::AlbedoComponent::Value(Vec4::from(albedo_factor)),
            },
            normal: match normals_tex {
                Some(tex) => dt::NormalTexture::Tricomponent(tex),
                None => dt::NormalTexture::None,
            },
            aomr_textures: match (metallic_roughness_tex, occlusion_tex) {
                (Some(mr), Some(ao)) if mr == ao => dt::AoMRTextures::GltfCombined { texture: Some(mr) },
                (mr, ao) => dt::AoMRTextures::GltfSplit {
                    mr_texture: mr,
                    ao_texture: ao,
                },
            },
            roughness_factor: Some(roughness_factor),
            metallic_factor: Some(metallic_factor),
            emissive: match emissive_tex {
                Some(tex) => dt::MaterialComponent::TextureValue {
                    handle: tex,
                    value: Vec3::from(emissive_factor),
                },
                None => dt::MaterialComponent::Value(Vec3::from(emissive_factor)),
            },
            unlit: material.unlit(),
            nearest,
            ..dt::Material::default()
        });

        loaded
            .materials
            .insert(Some(material.index().expect("unexpected default material")), handle);
    }

    Ok(())
}

async fn load_image<TLD, F, Fut>(
    renderer: &Renderer<TLD>,
    loaded: &mut LoadedGltfScene,
    image: gltf::Image<'_>,
    srgb: bool,
    texture_func: &mut F,
) -> Result<dt::TextureHandle, GltfLoadError>
where
    TLD: 'static,
    F: FnMut(&str) -> Fut,
    Fut: Future<Output = Result<Vec<u8>, async_std::io::Error>>,
{
    // TODO: Address format detection for compressed texs
    // TODO: Allow embedded images
    if let gltf::image::Source::Uri { uri, .. } = image.source() {
        let key = ImageKey {
            index: image.index(),
            srgb,
        };

        let data = texture_func(uri)
            .await
            .map_err(|e| GltfLoadError::TextureIo(uri.to_string(), e))?;
        let parsed = image::load_from_memory(&data).map_err(|e| GltfLoadError::TextureLoad(uri.to_string(), e))?;
        let rgba = parsed.to_rgba8();
        let handle = renderer.add_texture_2d(dt::Texture {
            label: image.name().map(str::to_owned),
            format: match srgb {
                true => dt::RendererTextureFormat::Rgba8Srgb,
                false => dt::RendererTextureFormat::Rgba8Linear,
            },
            width: rgba.width(),
            height: rgba.height(),
            data: rgba.into_raw(),
            /// TODO: automatic mipmapping (#53)
            mip_levels: 1,
        });

        loaded.images.insert(key, handle);

        Ok(handle)
    } else {
        unimplemented!()
    }
}