1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
mod tree;

use std::collections::HashMap;

pub type SmallVec<T> = smallvec::SmallVec<[T; 4]>;
type MediumVec<T> = smallvec::SmallVec<[T; 16]>;

#[derive(Clone, Copy, Debug)]
pub struct Dimensions {
	pub top: f64,
	pub right: f64,
	pub bottom: f64,
	pub left: f64,
}

impl Dimensions {
	pub fn all(size: f64) -> Dimensions {
		Dimensions {
			top: size,
			right: size,
			bottom: size,
			left: size,
		}
	}
}

/// Methods that are needed to apply this algorithm to any type of tree.
///
/// This trait is designed to work with both "traditional" point-to-children style trees (PTC trees)
/// and index trees (such as you would have if you wanted to use `petgraph::Graph` as a tree). To
/// accomodate this however the usage of the trait is not necessarily obvious when working with
/// "traditional" trees (there more examples in the examples folder at this crate's repo).
///
/// The TL;DR is that because a PTC tree contains all of it's information inside the nodes you don't
/// need a seperate tree type. However to accomodate index trees you need a "tree" type that you
/// implement the trait on plus a "node" type that gets returned from `children`. We can handle this
/// in PTC trees by defining a unit struct that we implement the trait on, but just ignore it in the
/// functions.
///
/// # Examples
///
/// PTC trees:
///
/// ```
/// extern crate reingold_tilford;
///
/// struct Tree;
///
/// struct Node {
/// 	id: usize,
/// 	children: Vec<Node>,
/// }
///
/// impl<'n> reingold_tilford::NodeInfo<&'n Node> for Tree {
/// 	type Key = usize;
///
/// 	fn key(&self, node: &'n Node) -> Self::Key {
/// 		node.id
/// 	}
///
/// 	fn children(&self, node: &'n Node) -> reingold_tilford::SmallVec<&'n Node> {
/// 		node.children.iter().collect()
/// 	}
/// }
///
/// fn main() {
/// 	let root = Node {
/// 		id: 0,
/// 		children: vec![
/// 			Node { id: 1, children: vec![] },
/// 			Node { id: 2, children: vec![] },
/// 		],
/// 	};
///
/// 	let layout = reingold_tilford::layout(&Tree, &root);
///
/// 	assert!(layout.get(&0).is_some());
/// 	let zero = layout.get(&0).unwrap();
/// 	assert!(1.0 - 1e-12 < zero.x && zero.x < 1.0 + 1e-12);
/// 	assert!(0.5 - 1e-12 < zero.y && zero.y < 0.5 + 1e-12);
/// }
/// ```
///
/// Index trees:
///
/// ```
/// extern crate petgraph;
/// extern crate reingold_tilford;
///
/// use petgraph::graph;
///
/// struct Graph(graph::Graph<usize, ()>);
///
/// impl reingold_tilford::NodeInfo<graph::NodeIndex> for Graph {
/// 	type Key = graph::NodeIndex;
///
/// 	fn key(&self, node: graph::NodeIndex) -> Self::Key {
/// 		node
/// 	}
///
/// 	fn children(&self, node: graph::NodeIndex) -> reingold_tilford::SmallVec<graph::NodeIndex> {
/// 		self.0.neighbors(node).collect()
/// 	}
/// }
/// ```
pub trait NodeInfo<N>
where
	Self::Key: std::cmp::Eq + std::hash::Hash,
	N: Copy,
{
	type Key;

	/// Returns a key that will be used to uniquely identify a given node.
	fn key(&self, node: N) -> Self::Key;

	/// Returns the children that a given node has.
	fn children(&self, node: N) -> SmallVec<N>;

	/// Returns the dimensions of a given node.
	///
	/// This is the padding that you want around the centre point of the node so that you can line
	/// things up as you want to (e.g. nodes aligned by their top border vs being aligned by their
	/// centres).
	///
	/// This value is generic over units (but all nodes must use the same unit) and the layout that
	/// this crate calculates will be given in terms of this unit. For example if you give this
	/// value in pixels then the layout will be given in terms of number of pixels from the left of
	/// the tree. Alternatively you might want to give this value in terms of the proportion of the
	/// width of your window (though note that this does not guarantee that the tree will fit in
	/// your window).
	///
	/// # Default
	///
	/// By default the algorithm assumes that each node is point-like (i.e. has no width or height).
	fn dimensions(&self, _node: N) -> Dimensions {
		Dimensions::all(0.0)
	}

	/// Returns the desired border around a given node.
	///
	/// See the `dimensions` method for a description of what units this has.
	///
	/// # Default
	///
	/// By default the algorithm assumes that each node has a border of `0.5` on every side.
	fn border(&self, _node: N) -> Dimensions {
		Dimensions::all(0.5)
	}
}

#[derive(Debug, Copy, Clone, Default, PartialEq, PartialOrd)]
pub struct Coordinate {
	/// The horizontal coordinate of a given point.
	///
	/// The origin of the coordinate system is at the top left of the tree so this value is
	/// relative to the left-most border of the left-most node. This coordinate is given in terms
	/// of the same units that `NodeInfo::dimensions` and `NodeInfo::border` use.
	pub x: f64,
	/// The vertical coordinate of a given point.
	///
	/// The origin of the coordinate system is at the top left of the tree so this value is
	/// relative to the top-most border of the top-most node. This coordinate is given in terms
	/// of the same units that `NodeInfo::dimensions` and `NodeInfo::border` use.
	pub y: f64,
}

#[derive(Clone, Debug)]
struct Data<K> {
	key: K,

	x: f64,
	y: f64,
	mod_: f64,

	dimensions: Dimensions,
	border: Dimensions,
}

impl<K> Data<K> {
	fn top_space(&self) -> f64 {
		self.dimensions.top + self.border.top
	}

	#[allow(dead_code)]
	fn top(&self) -> f64 {
		self.y - self.top_space()
	}

	fn bottom_space(&self) -> f64 {
		self.dimensions.bottom + self.border.bottom
	}

	fn bottom(&self) -> f64 {
		self.y + self.bottom_space()
	}

	fn left_space(&self) -> f64 {
		self.dimensions.left + self.border.left
	}

	fn left(&self) -> f64 {
		self.x - self.left_space()
	}

	fn right_space(&self) -> f64 {
		self.dimensions.right + self.border.right
	}

	fn right(&self) -> f64 {
		self.x + self.right_space()
	}
}

/// Returns the coordinates for the _centre_ of each node.
///
/// The origin of the coordinate system will be at the top left of the tree. The coordinates take
/// into account the width of the left-most node and shift everything so that the left-most border
/// of the left-most node is at 0 on the x-axis.
///
/// # Important
///
/// This algorithm _does_ account for the height of nodes but this is only to allow each row of
/// nodes to be aligned by their centre. If your tree has some nodes at a given depth which are
/// significantly larger than others and you want to avoid large gaps between rows then a more
/// general graph layout algorithm is required.
pub fn layout<N, T>(tree: &T, root: N) -> HashMap<T::Key, Coordinate>
where
	N: Copy,
	T: NodeInfo<N>,
{
	let mut tree = tree::Tree::new(tree, root, |t, n| Data {
		key: t.key(n),

		x: 0.0,
		y: 0.0,
		mod_: 0.0,

		dimensions: t.dimensions(n),
		border: t.border(n),
	});

	if let Some(root) = tree.root() {
		initialise_y(&mut tree, root);

		initialise_x(&mut tree, root);
		ensure_positive_x(&mut tree, root);
		finalise_x(&mut tree, root);

		tree.0
			.into_iter()
			.map(|tree::Node { data: d, .. }| (d.key, Coordinate { x: d.x, y: d.y }))
			.collect()
	} else {
		HashMap::new()
	}
}

fn initialise_y<K>(tree: &mut tree::Tree<Data<K>>, root: usize) {
	let mut next_row = MediumVec::from_elem(root, 1);

	while !next_row.is_empty() {
		let row = next_row;
		next_row = MediumVec::new();

		let mut max = -std::f64::INFINITY;
		for node in &row {
			let node = *node;

			tree[node].data.y = if let Some(parent) = tree[node].parent {
				tree[parent].data.bottom()
			} else {
				0.0
			} + tree[node].data.top_space();

			if tree[node].data.y > max {
				max = tree[node].data.y;
			}

			next_row.extend_from_slice(&tree[node].children);
		}

		for node in &row {
			tree[*node].data.y = max;
		}
	}
}

fn initialise_x<K>(tree: &mut tree::Tree<Data<K>>, root: usize) {
	for node in tree.post_order(root) {
		if tree[node].is_leaf() {
			tree[node].data.x = if let Some(sibling) = tree.previous_sibling(node) {
				tree[sibling].data.right()
			} else {
				0.0
			} + tree[node].data.left_space();
		} else {
			let mid = {
				let first = tree[*tree[node]
					.children
					.first()
					.expect("Only leaf nodes have no children.")]
				.data
				.x;
				let last = tree[*tree[node]
					.children
					.last()
					.expect("Only leaf nodes have no children.")]
				.data
				.x;

				(first + last) / 2.0
			};

			if let Some(sibling) = tree.previous_sibling(node) {
				tree[node].data.x = tree[sibling].data.right() + tree[node].data.left_space();
				tree[node].data.mod_ = tree[node].data.x - mid;
			} else {
				tree[node].data.x = mid;
			}

			fix_overlaps(tree, node);
		}
	}
}

fn fix_overlaps<K>(tree: &mut tree::Tree<Data<K>>, right: usize) {
	fn max_depth(l: &HashMap<usize, f64>, r: &HashMap<usize, f64>) -> usize {
		if let Some(l) = l.keys().max() {
			if let Some(r) = r.keys().max() {
				return std::cmp::min(*l, *r);
			}
		}

		0
	}

	let right_node_contour = left_contour(tree, right);

	for left in tree.left_siblings(right) {
		let left_node_contour = right_contour(tree, left);
		let mut shift = 0.0;

		for depth in tree[right].depth..=max_depth(&right_node_contour, &left_node_contour) {
			let gap = right_node_contour[&depth] - left_node_contour[&depth];
			if gap + shift < 0.0 {
				shift = -gap;
			}
		}

		tree[right].data.x += shift;
		tree[right].data.mod_ += shift;

		centre_nodes_between(tree, left, right);
	}
}

fn left_contour<K>(tree: &tree::Tree<Data<K>>, node: usize) -> HashMap<usize, f64> {
	contour(tree, node, min, |n| n.data.left())
}

fn right_contour<K>(tree: &tree::Tree<Data<K>>, node: usize) -> HashMap<usize, f64> {
	contour(tree, node, max, |n| n.data.right())
}

fn min<T: std::cmp::PartialOrd>(l: T, r: T) -> T {
	if l < r {
		l
	} else {
		r
	}
}

fn max<T: std::cmp::PartialOrd>(l: T, r: T) -> T {
	if l > r {
		l
	} else {
		r
	}
}

fn contour<C, E, K>(tree: &tree::Tree<Data<K>>, node: usize, cmp: C, edge: E) -> HashMap<usize, f64>
where
	C: Fn(f64, f64) -> f64,
	E: Fn(&tree::Node<Data<K>>) -> f64,
{
	let mut stack = MediumVec::from_elem((0.0, node), 1);
	let mut contour = HashMap::new();

	while let Some((mod_, node)) = stack.pop() {
		let depth = tree[node].depth;
		let shifted = edge(&tree[node]) + mod_;
		let new = if let Some(current) = contour.get(&depth) {
			cmp(*current, shifted)
		} else {
			shifted
		};
		let mod_ = mod_ + tree[node].data.mod_;

		contour.insert(depth, new);
		stack.extend(tree[node].children.iter().map(|c| (mod_, *c)));
	}

	contour
}

fn centre_nodes_between<K>(tree: &mut tree::Tree<Data<K>>, left: usize, right: usize) {
	let num_gaps = tree[right].order - tree[left].order;

	let space_per_gap = (tree[right].data.left() - tree[left].data.right()) / (num_gaps as f64);

	for (i, sibling) in tree.siblings_between(left, right).into_iter().enumerate() {
		let i = i + 1;

		let old_x = tree[sibling].data.x;
		// HINT: We traverse the tree in post-order so we should never be moving anything to the
		//       left.
		// TODO: Have some kind of `move_node` method that checks things like this?
		let new_x = max(old_x, tree[left].data.right() + space_per_gap * (i as f64));
		let diff = new_x - old_x;

		tree[sibling].data.x = new_x;
		tree[sibling].data.mod_ += diff;
	}
}

fn ensure_positive_x<K>(tree: &mut tree::Tree<Data<K>>, root: usize) {
	let contour = left_contour(tree, root);
	let shift = -contour
		.values()
		.fold(None, |acc, curr| {
			let acc = acc.unwrap_or(std::f64::INFINITY);
			let curr = *curr;
			Some(if curr < acc { curr } else { acc })
		})
		.unwrap_or(0.0);

	tree[root].data.x += shift;
	tree[root].data.mod_ += shift;
}

fn finalise_x<K>(tree: &mut tree::Tree<Data<K>>, root: usize) {
	for node in tree.breadth_first(root) {
		let shift = if let Some(parent) = tree[node].parent {
			tree[parent].data.mod_
		} else {
			0.0
		};

		tree[node].data.x += shift;
		tree[node].data.mod_ += shift;
	}
}