1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//! Module for working with derivatives.
//!
//! This module has functions for estimating and evaluating
//! derivatives of functions and for computing the slope and
//! concavity of functions at single points.

pub use super::func::*;

/// The value used for `h` in derivative estimates.
///
/// This value is chosen so as to offer the best accuracy, 
/// it is a compromise between the increase in accuracy caused 
/// by having an `h` closer to zero, and the decrease decrease 
/// in accuracy caused by floating point imprecision with very 
/// small values.
pub const EPSILON: f64 = 5.0e-7;

/// Return a `Function` estimating the `n`th derivative of `f`.
///
/// This function will return a `Function` that estimates the
/// `n`th derivative of `f` using the limit definition of the
/// derivative:
///
/// ```text
///                     f(x + h) - f(x)
/// f'(x) = lim         ---------------
///         h -> 0             h
/// ```
///
/// Where `h` is equal to `EPSILON`. See the documentation for
/// `EPSILON` for more information.
///
/// This function will use recursion to provide derivatives for `n > 1`.
///
/// It is important to note that the inaccuracy of the derivative
/// estimates compound each other, the higher `n` is, the less precise
/// the resulting function will be!
///
/// If `n = 0`, then a `clone()` of `f` is returned.
///
/// Examples
///
/// ```
/// #[macro_use] extern crate reikna;
/// # fn main() {
/// use reikna::derivative::*;
///
/// let f = func![|x| x * x];
///
/// let first_deriv = nth_derivative(1, &f);
/// let second_deriv = nth_derivative(2, &f);
///
/// println!("f(5)   = {}", f(5.0));
/// println!("f'(5)  = {}", first_deriv(5.0));
/// println!("f''(5) = {}", second_deriv(5.0));
/// # }
///
/// ```
///
/// Outputs:
///
/// ``` text
/// f(5)   = 25
/// f'(5)  = 10.00000100148668
/// f''(5) = 2.000177801164682
/// ```
pub fn nth_derivative(n: u64, f: &Function) -> Function {

    let f_copy = f.clone();
    let deriv: Function = func!(
        move |x: f64| {
            (f_copy(x + EPSILON) - f_copy(x - EPSILON)) / (EPSILON * 2.0)
    });

    match n {
        0 => f.clone(),
        1 => deriv,
        _ => nth_derivative(n - 1, &deriv),
    }
}

/// Return a function estimating the first derivative of `f`.
///
/// This is a helper function and is equivalent to calling
/// `nth_derivative(1, f)`.
///
/// Examples
///
/// ```
/// #[macro_use] extern crate reikna;
/// # fn main() {
/// use reikna::derivative::*;
///
/// let f = func![|x| x * x];
///
/// let first_deriv = derivative(&f);
///
/// println!("f(5)  = {}", f(5.0));
/// println!("f'(5) = {}", first_deriv(5.0));
/// # }
///
/// ```
///
/// Outputs:
///
/// ``` text
/// f(5)   = 25
/// f'(5)  = 10.00000100148668
/// ```
pub fn derivative(f: &Function) -> Function {
    nth_derivative(1, f)
}

/// Return a function estimating the second derivative of `f`.
///
/// This is a helper function and is equivalent to calling
/// `nth_derivative(2, f)`.
///
/// Examples
///
/// ```
/// #[macro_use] extern crate reikna;
/// # fn main() {
/// use reikna::derivative::*;
///
/// let f = func![|x| x * x];
///
/// let second_deriv = nth_derivative(2, &f);
///
/// println!("f(5)   = {}", f(5.0));
/// println!("f''(5) = {}", second_deriv(5.0));
/// # }
///
/// ```
///
/// Outputs:
///
/// ``` text
/// f(5)   = 25
/// f''(5) = 2.000177801164682
/// ```
pub fn second_derivative(f: &Function) -> Function {
    nth_derivative(2, f)
}

/// Estimate the value of the derivative of `f` at `x`
///
/// This function works by applying the limit definition of
/// the derivative at `x` in the same way that `nth_derivative()`
/// does. See the documentation for `nth_derivative()` for more
/// information.
///
/// Examples
///
/// ```
/// #[macro_use] extern crate reikna;
/// # fn main() {
/// use reikna::derivative::*;
///
/// let f = func![|x| (x + 4.0) * (x + 4.0)];
/// println!("f'(-4.0) = {}", slope_at(&f, -4.0));
/// # }
///
/// ```
/// Outputs:
///
/// ```text
/// f'(-4.0) = 0.000001000000000279556
/// ```
pub fn slope_at(f: &Function, x: f64) -> f64 {
    (f(x + EPSILON) - f(x - EPSILON)) / (EPSILON * 2.0)
}

/// Estimate the value of the second derivative of `f` at `x`
///
/// This function works by applying the limit definition of
/// the derivative twice, once to estimate the first derivative of `f()`
/// at two points, then once again to estimate the concavity.
///
/// The calculation is equivalent to:
///
/// ```text
///                     f(x + h) - 2f(x) * 2 + f(x - h)
/// f''(x) = lim        -------------------------------
///          h -> 0                    h^2 
/// ```
///
/// Examples
///
/// ```
/// #[macro_use] extern crate reikna;
/// # fn main() {
/// use reikna::derivative::*;
///
/// let f = func![|x| (x + 4.0) * (x + 4.0)];
/// println!("f''(-4.0) = {}", concavity_at(&f, -4.0));
/// # }
///
/// ```
/// Outputs:
///
/// ```text
/// f''(-4.0) = 2.0000000005591114
/// ```
pub fn concavity_at(f: &Function, x: f64) -> f64 {
      (f(x + EPSILON * 2.0) - f(x) * 2.0 + f(x - EPSILON * 2.0)) 
    / (EPSILON * 4.0 * EPSILON)
}

#[cfg(test)]
mod tests {
    use super::*;

#[test]
    fn t_nth_derivative() {
        let f = func!(|x: f64| x * x * x + 5.0);
        let f_deriv = derivative(&f);
        let f_s_deriv = second_derivative(&f);

        assert_fp!(f( 0.0),  5.0,  0.0001);
        assert_fp!(f( 4.0),  69.0, 0.0001);
        assert_fp!(f(-2.0), -3.0,  0.0001);

        assert_fp!(f_deriv( 0.0), 0.0,  0.001);
        assert_fp!(f_deriv( 4.0), 48.0, 0.001);
        assert_fp!(f_deriv(-2.0), 12.0, 0.001);

        assert_fp!(f_s_deriv( 0.0),  0.0,  0.1);
        assert_fp!(f_s_deriv( 4.0),  24.0, 0.1);
        assert_fp!(f_s_deriv(-2.0), -12.0, 0.1);

    }

#[test]
    fn t_helpers() {
        let f = func!(|x: f64| x * x);
        let f_deriv = derivative(&f);
        let f_s_deriv = second_derivative(&f);
        let f_deriv_2 = nth_derivative(1, &f);
        let f_s_deriv_2 = nth_derivative(2, &f);

        assert_eq!(f_deriv(0.0),  f_deriv_2(0.0));
        assert_eq!(f_deriv(10.4), f_deriv_2(10.4));
        assert_eq!(f_deriv(56.8), f_deriv_2(56.8));

        assert_eq!(f_s_deriv(0.0),  f_s_deriv_2(0.0));
        assert_eq!(f_s_deriv(40.4), f_s_deriv_2(40.4));
        assert_eq!(f_s_deriv(12.3), f_s_deriv_2(12.3));

        assert_eq!(f_deriv(0.0),  slope_at(&f, 0.0));
        assert_eq!(f_deriv(10.4), slope_at(&f, 10.4));
        assert_eq!(f_deriv(56.8), slope_at(&f, 56.8));

        assert_eq!(f_s_deriv(0.0),  concavity_at(&f, 0.0));
        assert_eq!(f_s_deriv(40.4), concavity_at(&f, 40.4));
        assert_eq!(f_s_deriv(12.3), concavity_at(&f, 12.3));
    }
}