1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
//! Module for working with prime numbers.
//!
//! This module has functions for generating prime numbers
//! using a variety of different sieves, testing if numbers
//! are prime or composite, and preforming simple factorizations.

/// Return a `Vec<u64>` of the primes in [1, `max_u64`] using the 
/// Sieve of Atkin.
///
/// This function is best suited for sieving with relatively
/// small maximums, in which case it is very fast. Large maximums
/// will start to incur negative performance impacts from
/// memory allocation, which increases linearly with `max_u64`.
/// For large maximums, `segmented_eratosthenes()` is a better choice.
/// `prime_sieve()` can be used to choose between the two automatically.
///
/// # Panics
///
/// Panics if `max_u64` cannot be cast into a `usize`.
///
/// Can panic if `max_u64` is so large that not enough
/// memory can be allocated for the sieve.
///
/// # Examples
///
/// ```
/// use reikna::prime::atkin;
/// assert_eq!(atkin(20), vec![2, 3, 5, 7, 11, 13, 17, 19]);
/// ```
pub fn atkin(max_u64: u64) -> Vec<u64> {
    assert!(max_u64 < ::std::usize::MAX as u64, 
            "sieve max {} is larger than machine word size!", max_u64);
    let max = max_u64 as usize;

    let mut primes: Vec<u64> = Vec::new();

    match max {
        0 | 1 => (),
        2     => primes.extend_from_slice(&[2]),
        3 | 4 => primes.extend_from_slice(&[2, 3]),
        _     => primes.extend_from_slice(&[2, 3, 5]),
    }

    if max < 6 {
        return primes
    }

    let mut sieve = Bitset::new(max);
    let limit = (max as f64).sqrt() as usize + 1;

    let mut index: usize;
    for x in 1..(limit + 1) {
        for y in 1..(limit + 1) {

            index = 4 * x * x + y * y;
            if index <= max {
                match index % 60 {
                    1 | 13 | 17 | 29 | 37 | 41 |49 | 53  => sieve.flip(index),
                    _ => (),
                }
            }

            index = 3 * x * x + y * y;
            if index <= max {
                match index % 60 {
                    7 | 19 | 31 | 43  => sieve.flip(index),
                    _ => (),
                }
            }
          
            if x <= y {
                continue;
            }

            index = 3 * x * x - y * y;
            if index <= max {
                match index % 60 {
                    11 | 23 | 47 | 59 => sieve.flip(index),
                    _ => (),
                }
            }
        }
    }

    let mut val;
    for i in 7..(limit + 1) {
        if sieve.read(i) {
            val = i * i;
            let mut k = val;
            while k <= max {
                sieve.set(k, false);
                k += val;
            }
        }
    }

    primes.extend(sieve.collect_true_indices());
    primes
}

/// Return a `Vec<u64>` of the primes in [1, `max_u64`] using the 
/// Sieve of Eratosthenes.
///
/// This function is probably not very useful to most users, 
/// and is used primarily in validating the other prime sieves.
///
/// # Panics
///
/// Panics if `max_u64` cannot be cast into a `usize`.
///
/// Can panic if `max_u64` is so large that not enough
/// memory can be allocated for the sieve.
///
/// # Examples
///
/// ```
/// use reikna::prime::eratosthenes;
/// assert_eq!(eratosthenes(20), vec![2, 3, 5, 7, 11, 13, 17, 19]);
/// ```
pub fn eratosthenes(max_u64: u64) -> Vec<u64> {
    assert!(max_u64 < ::std::usize::MAX as u64, 
            "sieve max {} is larger than machine word size!", max_u64);
    let max = max_u64 as usize;

    if max == 0 {
        return Vec::new();
    }

    let mut sieve = Bitset::new(max + 1);
    sieve.one();
    let mut primes: Vec<u64> = Vec::new();

    let mut not_prime;
    for pos in 2..(max + 1) {
        if sieve.read(pos) {
            primes.push(pos as u64);

            not_prime = pos * 2; 
            while not_prime < max + 1 {
                sieve.set(not_prime, false);
                not_prime += pos;
            }
        }
    }

    primes
}

/// Size of the segmented sieve segments in `segmented_eratosthenes()`
///
/// Also used to determine when `prime_sieve()` should
/// switch to using the segmented sieve from the Sieve of Atkin.
pub const S_SIEVE_SIZE: u64 = 65_536;

/// Macro representing the body of a segmented Sieve
/// of Eratosthenes.
///
/// This macro is useful for preforming operations on
/// ranges of prime numbers that would be too large to
/// store in memory (such as the `prime_sieve()` family of
/// functions.
///
/// The syntax for this macro is
///
/// ```text
/// segmented_sieve(max (identifier), candidate (identifier),
///                 callback (expression));
/// ```
///
/// Where `max` is an identifier where the max value for the sieve
/// can be found, `candidate` is an identifier that exposes each
/// prime found by the sieve, and `expression` is a callback expression
/// that is ran every time a prime is found.
///
/// Note -- this routine will never include the number `2`! It is a
/// special case and must be dealt with separately.
///
/// Note -- this macro assumes that several members of `prime` are
/// also in scope! The following `use` statement should work:
///
/// ```
/// use reikna::prime::{Bitset, S_SIEVE_SIZE, prime_sieve};
/// ```
///
/// # Panics
/// 
/// Panics if `prime_sieve()` panics. See the documentation of 
/// `prime_sieve()` for more information.
///
/// # Examples
///
/// Find the sum of the primes in `[0..1,000,000]`.
///
/// ```
/// #[macro_use] extern crate reikna;
/// use reikna::prime::{Bitset, S_SIEVE_SIZE, prime_sieve};
/// fn main() {
///     let max = 1_000_000;
///     let mut sum = 2;
///
///     segmented_sieve!(max, candidate, sum += candidate);
///
///     println!("Sum of primes in [0, {}] -- {}", max, sum);
/// }
/// ```
#[macro_export]
macro_rules! segmented_sieve {
    ($max:ident, $candidate:ident, $callback:expr) => {
        // generate small primes used for sieving
        let limit = ($max as f64).sqrt() as u64 + 1;
        let small_primes = prime_sieve(limit);

        // create the sieve 
        let mut sieve = Bitset::new(S_SIEVE_SIZE as usize);

        // create a vec of active sieving primes and their offsets
        let mut sieve_primes: Vec<u64> = Vec::new();
        let mut offsets: Vec<u64> = Vec::new();

        // cross-loop variables
        let mut small = 2;
        let mut $candidate = 3; 

        // calculate sieve end condition
        let end = ($max as f64 / S_SIEVE_SIZE as f64).ceil() as u64;
        for pos in (0..end).map(|pos| pos * S_SIEVE_SIZE) {
            sieve.one();

            // calculate the upper boundary
            let mut pos_h = pos + S_SIEVE_SIZE as u64 - 1;
            if pos_h > $max { pos_h = $max;}

            // add any new small primes to the sieve vec
            while small * small <= pos_h {
                if small_primes.iter().any(|x| *x == small) {
                    sieve_primes.push(small);
                    offsets.push(small * small - pos);
                }
                small += 1;
            }

            // preform the sieve
            for i in 1..sieve_primes.len() {
                let mut j = offsets[i];
                let k = sieve_primes[i] * 2;

                while j < S_SIEVE_SIZE as u64 {
                    sieve.set(j as usize, false);
                    j += k;
                }
                offsets[i] = j - S_SIEVE_SIZE as u64;
            }

            // collect primes, call the callback expression
            while $candidate <= pos_h {
                if sieve.read(($candidate - pos) as usize) {
                    $callback
                }
                $candidate += 2;
            }

        }
    }
}

/// Return a `Vec<u64>` of the primes in [1, max] using a segmented
/// Sieve of Eratosthenes.
///
/// This function is best suited for sieving with a large max,
/// otherwise `atkin()` is preferable. `prime_sieve()` can be
/// used to chose between the two automatically.
///
/// The size of the segments is determined by `S_SIEVE_SIZE`.
///
/// # Panics
///
/// Panics if `max` cannot be cast into a `usize`.
///
/// # Examples
///
/// ```
/// use reikna::prime::segmented_eratosthenes;
/// assert_eq!(segmented_eratosthenes(10), vec![2, 3, 5, 7]);
/// ```
pub fn segmented_eratosthenes(max: u64) -> Vec<u64> {
    if max < 2 {
        return Vec::new();
    }

    let mut primes: Vec<u64> = vec![2];
    segmented_sieve!(max, candidate, {primes.push(candidate);});

    primes
}

/// Return the Nth prime number, starting with `P0 = 2`.
///
/// This function works by sieving the range `[0..u64::MAX]`,
/// and returning after the Nth prime is found.
///
/// If the Nth prime is not in this range, this function will
/// panic.
///
/// # Panics
///
/// Panics if the Nth prime is greater than `u64::MAX`.
///
/// # Examples
///
/// ```
/// use reikna::prime::nth_prime;
/// assert_eq!(nth_prime(3), 7);
/// assert_eq!(nth_prime(24), 97);
/// ```
pub fn nth_prime(n: u64) -> u64 {
    match n {
        0 => return 2,
        1 => return 3,
        2 => return 5,
        3 => return 7,
        _ => (),
    }

    let nf = (n + 1) as f64;
    let max = ((nf * nf.ln()) + (nf * nf.ln().ln())).ceil() as u64;
    let mut count = 1;
    segmented_sieve!(max, candidate, { 
                                        if count == n { return candidate; }
                                        count += 1; 
                                     });

    panic!("Nth prime of N = {} is larger than u64::MAX!", n);
}

/// Idiomatic prime sieve, returns a `Vec<u64>` of primes in [1, max].
///
/// If you want to generate primes, this is probably the function
/// you want.
///
/// This function will use `atkin()` to generate primes if
/// `max` is less than `S_SIEVE_SIZE`, otherwise it will use 
/// `segmented_eratosthenes()`.
///
/// See `atkin()` and `segmented_eratosthenes()` for more
/// information.
///
/// # Panics
/// 
/// Panics if `max` is too large to cast into a `usize`.
///
/// # Examples
///
/// ```
/// use reikna::prime::prime_sieve;
/// assert_eq!(prime_sieve(20), vec![2, 3, 5, 7, 11, 13, 17, 19]);
/// ```
pub fn prime_sieve(max: u64) -> Vec<u64> { 
    if max < S_SIEVE_SIZE { // 2^16
        return atkin(max);
    }

    segmented_eratosthenes(max)
}

/// Return `true` if `value` is prime, and false if it is composite.
///
/// This function works by checking if `value` is a small prime,
/// the checking if it is divisible by two or three.
///
/// Next, a loop is preformed to check if `value` can be represented
/// in the form `6x +/- 1`, if it can, `value` is composite. Otherwise
/// it is prime.
///
/// # Examples
///
/// ```
/// use reikna::prime::is_prime;
/// assert_eq!(is_prime(64), false);
/// assert_eq!(is_prime(97), true);
/// assert_eq!(is_prime(113), true);
/// assert_eq!(is_prime(128), false);
/// ```
pub fn is_prime(value: u64) -> bool {
    if value < 2 {
        return false;
    } 

    if value < 4 {
        return true;
    }

    if value % 2 == 0 || value % 3 == 0 {
        return false;
    }

    let max_fac = (value as f64).sqrt() as u64 + 1;
    let mut test_fac = 5;
    while test_fac <= max_fac {
        if value % test_fac == 0 || value % (test_fac + 2) == 0 {
            return false;
        }
        test_fac += 6;
    }

    true
}

/// Return a `Vec<u64>` of the value's factorization,
/// using the provided list of primes.
///
/// This function preforms factorization by test dividing
/// `value` for all provided primes in [1, value].
///
/// This function is best suited for computing multiple
/// factorizations, so the primes list can be cached between
/// calls, or for computing factorizations with a custom list
/// of "prime factors". For other uses, such as factoring a
/// single value, `factorize()` may be a wiser choice.
///
/// # Examples
///
/// Please note this function assumes that `primes` is sorted.
///
/// ```
/// use reikna::prime::factorize;
/// assert_eq!(factorize(200), vec![2, 2, 2, 5, 5]); 
/// ```
pub fn factorize_wp(mut value: u64, primes: &[u64]) -> Vec<u64> {
    let mut factors: Vec<u64> = Vec::new();

    if value <= 1 {
        return factors;
    }

    for prime in primes {
        if *prime > value {
            break;
        }

        while value % *prime == 0 {
            factors.push(*prime);
            value /= *prime;
        }
    }

    factors
}

/// Return a `Vec<u64>` of the value's factorization
///
/// This is a helper function that generates a `Vec` of
/// primes internally, rather than requiring one to be
/// explicitly passed in.
///
/// # Panics
///
/// Panics if `value` causes a panic when provided to
/// `prime_sieve()`.
///
/// # Examples
///
/// ```
/// use reikna::prime::factorize;
/// assert_eq!(factorize(100), vec![2, 2, 5, 5]); 
/// ```
pub fn factorize(value: u64) -> Vec<u64> {
    factorize_wp(value, &prime_sieve(value))
}

/// Return the smallest prime number greater than `n`.
///
/// This function works by adding `2` to `n`, then testing
/// `n`'s primality with `is_prime()`. If `n` is initially
/// even, `1` is added to it. If the resulting value is not
/// prime, the normal sequence continues
///
/// # Examples
///
/// ```
/// use reikna::prime::next_prime;
/// assert_eq!(next_prime(5), 7);
/// assert_eq!(next_prime(95), 97);
/// ```
pub fn next_prime(mut n: u64) -> u64 {
    if n == 0 || n == 1 {
        return 2;
    }

    if n & 0x01 == 0 {
        n |= 0x01;
        if is_prime(n) { return n; }
    }
    
    loop {
        n += 2;
        if is_prime(n) { return n; }
    }
}

/// Simple bit set implementation for prime sieves
///
/// Please note that this struct is not intended for
/// general use, and is only publicly exposed so
/// the `segmented_sieve!` macro can work.
pub struct Bitset {
    data: Vec<u8>,
    size: usize
}

impl Bitset {
#![allow(missing_docs)]

    pub fn new(size: usize) -> Bitset {
        let size_bytes = size + (size % 8);
        Bitset { data: vec![0; size_bytes], size: size }
    }

    pub fn one(&mut self) {
        for byte in &mut self.data {
            *byte = 0xff;
        }
    }

    pub fn read(&self, pos: usize) -> bool {
        self.data[pos / 8] & 0x01 << (pos % 8) != 0x00
    }

    fn flip(&mut self, pos: usize) {
        self.data[pos / 8] ^= 0x01 << (pos % 8);
    }

    pub fn set(&mut self, pos: usize, value: bool) {
        if self.read(pos) != value {
            self.flip(pos);
        }
    }

    fn collect_true_indices(&self) -> Vec<u64> {
        let mut res: Vec<u64> = Vec::new(); 
        for i in 0..self.size + 1 {
            if self.read(i) {
                res.push(i as u64);
            }
        }
        res
    }
}

#[cfg(test)]
mod tests {
    use super::*;

#[test]
    fn t_prime_sieves() {
        let primes = prime_sieve(0);
        assert_eq!(primes.len(), 0);

        let primes = prime_sieve(2);
        assert_eq!(primes.len(), 1);

        let primes = prime_sieve(100);
        assert_eq!(primes.len(), 25);

        assert_eq!(eratosthenes(0), atkin(0));
        assert_eq!(eratosthenes(1), atkin(1));
        assert_eq!(eratosthenes(2), atkin(2));
        assert_eq!(eratosthenes(3), atkin(3));
        assert_eq!(eratosthenes(4), atkin(4));
        assert_eq!(eratosthenes(5), atkin(5));
        assert_eq!(eratosthenes(6), atkin(6));
        assert_eq!(eratosthenes(10), atkin(10));
        assert_eq!(eratosthenes(1000), atkin(1000));

        assert_eq!(segmented_eratosthenes(0), atkin(0));
        assert_eq!(segmented_eratosthenes(1), atkin(1));
        assert_eq!(segmented_eratosthenes(2), atkin(2));
        assert_eq!(segmented_eratosthenes(3), atkin(3));
        assert_eq!(segmented_eratosthenes(4), atkin(4));
        assert_eq!(segmented_eratosthenes(5), atkin(5));
        assert_eq!(segmented_eratosthenes(6), atkin(6));
        assert_eq!(segmented_eratosthenes(10), atkin(10));
        assert_eq!(segmented_eratosthenes(100000), atkin(100000));
    }

#[test]
    fn t_is_prime() {
        assert_eq!(is_prime(0), false);
        assert_eq!(is_prime(1), false);
        assert_eq!(is_prime(10), false);
        assert_eq!(is_prime(1232), false);
        assert_eq!(is_prime(2), true);
        assert_eq!(is_prime(3), true);
        assert_eq!(is_prime(5), true);
        assert_eq!(is_prime(97), true);
        assert_eq!(is_prime(9973), true);
    }

#[test]
    fn t_factorize() {
        let vec: Vec<u64> = Vec::new();

        assert_eq!(factorize(0), vec);
        assert_eq!(factorize(1), vec);

        let vec: Vec<u64> = vec![7];
        assert_eq!(factorize(7), vec);

        let vec: Vec<u64> = vec![2, 2, 3];
        assert_eq!(factorize(12), vec);

        let vec: Vec<u64> = vec![2, 2, 5, 5];
        assert_eq!(factorize(100), vec);
    }

#[test]
    fn t_next_prime() {
        assert_eq!(next_prime(0), 2);
        assert_eq!(next_prime(1), 2);
        assert_eq!(next_prime(2), 3);
        assert_eq!(next_prime(3), 5);
        assert_eq!(next_prime(4), 5);
        assert_eq!(next_prime(15), 17);
        assert_eq!(next_prime(39), 41);
        assert_eq!(next_prime(98), 101);
        assert_eq!(next_prime(1_299_821), 1_299_827);
    }

#[test]
    fn t_nth_prime() {
        assert_eq!(nth_prime(0), 2);
        assert_eq!(nth_prime(1), 3);
        assert_eq!(nth_prime(2), 5);
        assert_eq!(nth_prime(3), 7);
        assert_eq!(nth_prime(4), 11);
        assert_eq!(nth_prime(5), 13);
        assert_eq!(nth_prime(25), 101);
        assert_eq!(nth_prime(1_000_000), 15_485_867);
    }

#[test]
#[ignore]
    fn t_nth_prime_long() {
        assert_eq!(nth_prime(1_000_000_000), 22_801_763_513);
    }
}