1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
//! Top level module for all analysis activities.

use log::{debug, info};

use crate::analysis_control_flow::{CFGInfo, InstIxToBlockIxMap};
use crate::analysis_data_flow::{
    calc_def_and_use, calc_livein_and_liveout, get_range_frags, get_sanitized_reg_uses_for_func,
    merge_range_frags, set_virtual_range_metrics,
};
use crate::data_structures::{
    BlockIx, RangeFrag, RangeFragIx, RangeFragMetrics, RealRange, RealRangeIx, RealReg,
    RealRegUniverse, Reg, RegVecsAndBounds, TypedIxVec, VirtualRange, VirtualRangeIx,
};
use crate::sparse_set::SparseSet;
use crate::Function;

//=============================================================================
// Overall analysis return results, for both control- and data-flow analyses.
// All of these failures refer to various problems with the code that the
// client (caller) supplied to us.

#[derive(Clone, Debug)]
pub enum AnalysisError {
    /// A critical edge from "from" to "to" has been found, and should have been
    /// removed by the caller in the first place.
    CriticalEdge { from: BlockIx, to: BlockIx },

    /// Some values in the entry block are live in to the function, but are not
    /// declared as such.
    EntryLiveinValues,

    /// The incoming code has an explicit or implicit mention (use, def or mod)
    /// of a real register, which either (1) isn't listed in the universe at
    /// all, or (2) is one of the `suggested_scratch` registers in the universe.
    /// (1) isn't allowed because the client must mention *all* real registers
    /// in the universe.  (2) isn't allowed because the client promises to us
    /// that the `suggested_scratch` registers really are completely unused in
    /// the incoming code, so that the allocator can use them at literally any
    /// point it wants.
    IllegalRealReg(RealReg),

    /// At least one block is dead.
    UnreachableBlocks,

    /// Implementation limits exceeded.  The incoming function is too big.  It
    /// may contain at most 1 million basic blocks and 16 million instructions.
    ImplementationLimitsExceeded,
}

impl ToString for AnalysisError {
    fn to_string(&self) -> String {
        match self {
      AnalysisError::CriticalEdge { from, to } => {
        format!("critical edge detected, from {:?} to {:?}", from, to)
      }
      AnalysisError::EntryLiveinValues => {
        "entry block has live-in value not present in function liveins".into()
      }
      AnalysisError::IllegalRealReg(reg) => {
        format!("instructions mention real register {:?}, which either isn't defined in the register universe, or is a 'suggested_scratch' register", reg)
      }
      AnalysisError::UnreachableBlocks => {
        "at least one block is unreachable".to_string()
      }
      AnalysisError::ImplementationLimitsExceeded => {
        "implementation limits exceeded (more than 1 million blocks or 16 million insns)".to_string()
      }
    }
    }
}

//=============================================================================
// Top level for all analysis activities.

#[inline(never)]
pub fn run_analysis<F: Function>(
    func: &F,
    reg_universe: &RealRegUniverse,
) -> Result<
    (
        // The sanitized per-insn reg-use info
        RegVecsAndBounds,
        // The real-reg live ranges
        TypedIxVec<RealRangeIx, RealRange>,
        // The virtual-reg live ranges
        TypedIxVec<VirtualRangeIx, VirtualRange>,
        // The fragment table
        TypedIxVec<RangeFragIx, RangeFrag>,
        // The fragment metrics table
        TypedIxVec<RangeFragIx, RangeFragMetrics>,
        // Liveouts per block
        TypedIxVec<BlockIx, SparseSet<Reg>>,
        // Estimated execution frequency per block
        TypedIxVec<BlockIx, u32>,
        // Maps InstIxs to BlockIxs
        InstIxToBlockIxMap,
    ),
    AnalysisError,
> {
    info!("run_analysis: begin");
    info!(
        "  run_analysis: {} blocks, {} insns",
        func.blocks().len(),
        func.insns().len()
    );
    info!("  run_analysis: begin control flow analysis");

    // First do control flow analysis.  This is (relatively) simple.  Note that
    // this can fail, for various reasons; we propagate the failure if so.
    let cfg_info = CFGInfo::create(func)?;

    // Create the InstIx-to-BlockIx map.  This isn't really control-flow
    // analysis, but needs to be done at some point.
    let inst_to_block_map = InstIxToBlockIxMap::new(func);

    // Annotate each Block with its estimated execution frequency
    let mut estimated_frequencies = TypedIxVec::new();
    for bix in func.blocks() {
        let mut estimated_frequency = 1;
        let mut depth = cfg_info.depth_map[bix];
        if depth > 3 {
            depth = 3;
        }
        for _ in 0..depth {
            estimated_frequency *= 10;
        }
        assert!(bix == BlockIx::new(estimated_frequencies.len()));
        estimated_frequencies.push(estimated_frequency);
    }

    info!("  run_analysis: end control flow analysis");

    // Now perform dataflow analysis.  This is somewhat more complex.
    info!("  run_analysis: begin data flow analysis");

    // See `get_sanitized_reg_uses_for_func` for the meaning of "sanitized".
    let reg_vecs_and_bounds = get_sanitized_reg_uses_for_func(func, reg_universe)
        .map_err(|reg| AnalysisError::IllegalRealReg(reg))?;
    assert!(reg_vecs_and_bounds.is_sanitized());

    // Calculate block-local def/use sets.
    let (def_sets_per_block, use_sets_per_block) =
        calc_def_and_use(func, &reg_vecs_and_bounds, &reg_universe);
    debug_assert!(def_sets_per_block.len() == func.blocks().len() as u32);
    debug_assert!(use_sets_per_block.len() == func.blocks().len() as u32);

    // Calculate live-in and live-out sets per block, using the traditional
    // iterate-to-a-fixed-point scheme.

    // `liveout_sets_per_block` is amended below for return blocks, hence `mut`.
    let (livein_sets_per_block, mut liveout_sets_per_block) = calc_livein_and_liveout(
        func,
        &def_sets_per_block,
        &use_sets_per_block,
        &cfg_info,
        &reg_universe,
    );
    debug_assert!(livein_sets_per_block.len() == func.blocks().len() as u32);
    debug_assert!(liveout_sets_per_block.len() == func.blocks().len() as u32);

    // Verify livein set of entry block against liveins specified by function
    // (e.g., ABI params).
    let func_liveins = SparseSet::from_vec(
        func.func_liveins()
            .to_vec()
            .into_iter()
            .map(|rreg| rreg.to_reg())
            .collect(),
    );
    if !livein_sets_per_block[func.entry_block()].is_subset_of(&func_liveins) {
        return Err(AnalysisError::EntryLiveinValues);
    }

    // Add function liveouts to every block ending in a return.
    let func_liveouts = SparseSet::from_vec(
        func.func_liveouts()
            .to_vec()
            .into_iter()
            .map(|rreg| rreg.to_reg())
            .collect(),
    );
    for block in func.blocks() {
        let last_iix = func.block_insns(block).last();
        if func.is_ret(last_iix) {
            liveout_sets_per_block[block].union(&func_liveouts);
        }
    }

    info!("  run_analysis: end data flow analysis");

    // Dataflow analysis is now complete.  Now compute the virtual and real live
    // ranges, in two steps: (1) compute RangeFrags, and (2) merge them
    // together, guided by flow and liveness info, so as to create the final
    // VirtualRanges and RealRanges.
    info!("  run_analysis: begin liveness analysis");

    let (frag_ixs_per_reg, frag_env, frag_metrics_env) = get_range_frags(
        func,
        &livein_sets_per_block,
        &liveout_sets_per_block,
        &reg_vecs_and_bounds,
        &reg_universe,
    );

    let (rlr_env, mut vlr_env) =
        merge_range_frags(&frag_ixs_per_reg, &frag_env, &frag_metrics_env, &cfg_info);

    set_virtual_range_metrics(
        &mut vlr_env,
        &frag_env,
        &frag_metrics_env,
        &estimated_frequencies,
    );

    debug_assert!(liveout_sets_per_block.len() == estimated_frequencies.len());

    debug!("");
    let mut n = 0;
    for rlr in rlr_env.iter() {
        debug!(
            "{:<4?}   {}",
            RealRangeIx::new(n),
            rlr.show_with_rru(&reg_universe)
        );
        n += 1;
    }

    debug!("");
    n = 0;
    for vlr in vlr_env.iter() {
        debug!("{:<4?}   {:?}", VirtualRangeIx::new(n), vlr);
        n += 1;
    }

    info!("  run_analysis: end liveness analysis");
    info!("run_analysis: end");

    Ok((
        reg_vecs_and_bounds,
        rlr_env,
        vlr_env,
        frag_env,
        frag_metrics_env,
        liveout_sets_per_block,
        estimated_frequencies,
        inst_to_block_map,
    ))
}