1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
extern crate proc_macro;

use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2};
use quote::quote;
use syn::parse::Nothing;
use syn::punctuated::Punctuated;
use syn::{
    parse_macro_input, Data, DeriveInput, Error, Field, Meta, NestedMeta, Result, Token, Type,
};

#[proc_macro_derive(RefCast, attributes(trivial))]
pub fn derive_ref_cast(input: TokenStream) -> TokenStream {
    let input = parse_macro_input!(input as DeriveInput);
    expand(input)
        .unwrap_or_else(|err| err.to_compile_error())
        .into()
}

fn expand(input: DeriveInput) -> Result<TokenStream2> {
    if !has_repr_c(&input) {
        return Err(Error::new(
            Span::call_site(),
            "RefCast trait requires #[repr(C)] or #[repr(transparent)]",
        ));
    }

    let name = &input.ident;
    let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();

    let fields = fields(&input)?;
    let from = only_field_ty(fields)?;
    let trivial = trivial_fields(fields)?;

    let assert_trivial_fields = if !trivial.is_empty() {
        Some(quote! {
            if false {
                #(
                    ::ref_cast::private::assert_trivial::<#trivial>();
                )*
            }
        })
    } else {
        None
    };

    Ok(quote! {
        impl #impl_generics ::ref_cast::RefCast for #name #ty_generics #where_clause {
            type From = #from;

            #[inline]
            fn ref_cast(_from: &Self::From) -> &Self {
                // TODO: assert that `Self::From` and `Self` have the same size
                // and alignment.
                //
                // Cannot do this because `Self::From` may be a generic type
                // parameter of `Self` where `transmute` is not allowed:
                //
                //     #[allow(unused)]
                //     unsafe fn assert_same_size #impl_generics #where_clause () {
                //         _core::mem::forget(
                //             _core::mem::transmute::<#from, #name #ty_generics>(
                //                 _core::mem::uninitialized()));
                //     }
                //
                // Cannot do this because `Self::From` may not be sized:
                //
                //     debug_assert_eq!(_core::mem::size_of::<Self::From>(),
                //                      _core::mem::size_of::<Self>());
                //     debug_assert_eq!(_core::mem::align_of::<Self::From>(),
                //                      _core::mem::align_of::<Self>());

                #assert_trivial_fields
                unsafe {
                    &*(_from as *const Self::From as *const Self)
                }
            }

            #[inline]
            fn ref_cast_mut(_from: &mut Self::From) -> &mut Self {
                unsafe {
                    &mut *(_from as *mut Self::From as *mut Self)
                }
            }
        }
    })
}

fn has_repr_c(input: &DeriveInput) -> bool {
    for attr in &input.attrs {
        if let Ok(Meta::List(meta)) = attr.parse_meta() {
            if meta.path.is_ident("repr") && meta.nested.len() == 1 {
                if let NestedMeta::Meta(Meta::Path(path)) = &meta.nested[0] {
                    if path.is_ident("C") || path.is_ident("transparent") {
                        return true;
                    }
                }
            }
        }
    }
    false
}

type Fields = Punctuated<Field, Token![,]>;

fn fields(input: &DeriveInput) -> Result<&Fields> {
    use syn::Fields;

    match &input.data {
        Data::Struct(data) => match &data.fields {
            Fields::Named(fields) => Ok(&fields.named),
            Fields::Unnamed(fields) => Ok(&fields.unnamed),
            Fields::Unit => Err(Error::new(
                Span::call_site(),
                "RefCast does not support unit structs",
            )),
        },
        Data::Enum(_) => Err(Error::new(
            Span::call_site(),
            "RefCast does not support enums",
        )),
        Data::Union(_) => Err(Error::new(
            Span::call_site(),
            "RefCast does not support unions",
        )),
    }
}

fn only_field_ty(fields: &Fields) -> Result<&Type> {
    let is_trivial = decide_trivial(fields)?;
    let mut only_field = None;

    for field in fields {
        if !is_trivial(field)? {
            if only_field.take().is_some() {
                break;
            }
            only_field = Some(&field.ty);
        }
    }

    only_field.ok_or_else(|| {
        Error::new(
            Span::call_site(),
            "RefCast requires a struct with a single field",
        )
    })
}

fn trivial_fields(fields: &Fields) -> Result<Vec<&Type>> {
    let is_trivial = decide_trivial(fields)?;
    let mut trivial = Vec::new();

    for field in fields {
        if is_trivial(field)? {
            trivial.push(&field.ty);
        }
    }

    Ok(trivial)
}

fn decide_trivial(fields: &Fields) -> Result<fn(&Field) -> Result<bool>> {
    for field in fields {
        if is_explicit_trivial(field)? {
            return Ok(is_explicit_trivial);
        }
    }
    Ok(is_implicit_trivial)
}

fn is_implicit_trivial(field: &Field) -> Result<bool> {
    match &field.ty {
        Type::Tuple(ty) => Ok(ty.elems.is_empty()),
        Type::Path(ty) => Ok(ty.path.segments.last().unwrap().ident == "PhantomData"),
        _ => Ok(false),
    }
}

fn is_explicit_trivial(field: &Field) -> Result<bool> {
    for attr in &field.attrs {
        if attr.path.is_ident("trivial") {
            syn::parse2::<Nothing>(attr.tokens.clone())?;
            return Ok(true);
        }
    }
    Ok(false)
}