reed_solomon/
decoder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
use core;
use ::gf::poly_math::*;
use ::gf::poly::Polynom;
use ::buffer::Buffer;
use ::gf;

/// Decoder error
#[derive(Debug, Copy, Clone)]
pub enum DecoderError {
    /// Message is unrecoverably corrupted
    TooManyErrors,
}

type Result<T> = core::result::Result<T, DecoderError>;

/// Reed-Solomon BCH decoder
#[derive(Debug, Copy, Clone)]
pub struct Decoder {
    ecc_len: usize,
}

impl Decoder {
    /// Constructs a new `Decoder`.
    ///
    /// # Example
    /// ```rust
    /// use reed_solomon::Decoder;
    ///
    /// let decoder = Decoder::new(8);
    /// ```
    pub fn new(ecc_len: usize) -> Self {
        Decoder { ecc_len: ecc_len }
    }

    /// Decodes block-encoded message and returns `Buffer` with corrected message and ecc offset.
    /// Also includes the number of errors corrected.
    ///
    /// # Example
    /// ```rust
    /// use reed_solomon::Encoder;
    /// use reed_solomon::Decoder;
    ///
    /// // Create encoder and decoder
    /// let encoder = Encoder::new(4);
    /// let decoder = Decoder::new(4);
    ///
    /// // Encode message
    /// let mut encoded = encoder.encode(&[1, 2, 3, 4]);
    ///
    /// // Corrupt message
    /// encoded[2] = 1;
    /// encoded[3] = 2;
    ///
    /// // Let's assume it's known that `encoded[3]` is an error
    /// let known_erasures = [3];
    ///
    /// // Decode and correct message,
    /// let corrected = decoder.correct(&mut encoded, Some(&known_erasures)).unwrap();
    ///
    /// // Check results
    /// assert_eq!(&[1, 2, 3, 4], corrected.data())
    /// ```
    pub fn correct_err_count(&self,
                             msg: &[u8],
                             erase_pos: Option<&[u8]>)
                             -> Result<(Buffer, usize)> {
       let mut msg = Buffer::from_slice(msg, msg.len() - self.ecc_len);

        assert!(msg.len() < 256);

        let erase_pos = if let Some(erase_pos) = erase_pos {
            for e_pos in erase_pos {
                msg[*e_pos as usize] = 0;
            }
            erase_pos
        } else {
            &[]
        };

        if erase_pos.len() > self.ecc_len {
            return Err(DecoderError::TooManyErrors);
        }

        let synd = self.calc_syndromes(&msg);

        // No errors
        if synd.iter().all(|x| *x == 0) {
            return Ok((msg,0));
        }

        let fsynd = self.forney_syndromes(&synd, erase_pos, msg.len());
        let err_loc = try!(self.find_error_locator(&fsynd, None, erase_pos.len()));
        let mut err_pos = try!(self.find_errors(&err_loc.reverse(), msg.len()));

        // Append erase_pos to err_pos
        for x in erase_pos.iter() {
            err_pos.push(*x);
        }

        let (msg_out, fixed) = self.correct_errata(&msg, &synd, &err_pos);

        // Check output message correctness
        if self.is_corrupted(&msg_out) {
            Err(DecoderError::TooManyErrors)
        } else {
            Ok((Buffer::from_polynom(msg_out, msg.len() - self.ecc_len), fixed))
        }
    }

    /// Decodes block-encoded message and returns `Buffer` with corrected message and ecc offset.
    ///
    /// # Example
    /// ```rust
    /// use reed_solomon::Encoder;
    /// use reed_solomon::Decoder;
    ///
    /// // Create encoder and decoder
    /// let encoder = Encoder::new(4);
    /// let decoder = Decoder::new(4);
    ///
    /// // Encode message
    /// let mut encoded = encoder.encode(&[1, 2, 3, 4]);
    ///
    /// // Corrupt message
    /// encoded[2] = 1;
    /// encoded[3] = 2;
    ///
    /// // Let's assume it's known that `encoded[3]` is an error
    /// let known_erasures = [3];
    ///
    /// // Decode and correct message,
    /// let corrected = decoder.correct(&mut encoded, Some(&known_erasures)).unwrap();
    ///
    /// // Check results
    /// assert_eq!(&[1, 2, 3, 4], corrected.data())
    /// ```
    pub fn correct(&self,
                   msg: &[u8],
                   erase_pos: Option<&[u8]>)
                   -> Result<Buffer> {
        self.correct_err_count(msg, erase_pos).map(|(r,_)| r)
     }

    /// Performs fast corruption check.
    ///
    /// # Example
    /// ```rust
    /// use reed_solomon::Encoder;
    /// use reed_solomon::Decoder;
    ///
    /// // Create encoder and decoder
    /// let encoder = Encoder::new(4);
    /// let decoder = Decoder::new(4);
    ///
    /// // Encode message
    /// let mut encoded = encoder.encode(&[1, 2, 3, 4]);
    ///
    /// assert_eq!(decoder.is_corrupted(&encoded), false);
    ///
    /// // Corrupt message
    /// encoded[2] = 1;
    /// encoded[3] = 2;
    ///
    /// assert_eq!(decoder.is_corrupted(&encoded), true);
    /// ```
    pub fn is_corrupted(&self, msg: &[u8]) -> bool {
        (0..self.ecc_len).any(|x| msg.eval(gf::pow(2, x as i32)) != 0)
    }

    fn calc_syndromes(&self, msg: &[u8]) -> Polynom {
        // index 0 is a pad for mathematical precision
        let mut synd = Polynom::with_length(self.ecc_len + 1);
        for i in 0..self.ecc_len {
            uncheck_mut!(synd[i + 1]) = msg.eval(gf::pow(2, i as i32))
        }

        synd
    }

    fn find_errata_locator(&self, e_pos: &[u8]) -> Polynom {
        let mut e_loc = polynom![1];

        let add_lhs = [1];
        let mut add_rhs = [0, 0];
        for i in e_pos.iter() {
            add_rhs[0] = gf::pow(2, *i as i32);
            e_loc = e_loc.mul(&add_lhs.add(&add_rhs));
        }

        e_loc
    }

    fn find_error_evaluator(&self, synd: &[u8], err_loc: &[u8], syms: usize) -> Polynom {
        let mut divisor = Polynom::with_length(syms + 2);
        divisor[0] = 1;

        let (_, remainder) = (synd.mul(err_loc)).div(&divisor);
        remainder
    }

    /// Forney algorithm, computes the values (error magnitude) to correct the input message.
    #[allow(non_snake_case)]
    fn correct_errata(&self, msg: &[u8], synd: &[u8], err_pos: &[u8]) -> (Polynom, usize) {
        // convert the positions to coefficients degrees
        let mut coef_pos = Polynom::with_length(err_pos.len());
        for (i, x) in err_pos.iter().enumerate() {
            coef_pos[i] = msg.len() as u8 - 1 - x;
        }

        let err_loc = self.find_errata_locator(&coef_pos);
        let synd = Polynom::from(synd);
        let err_eval = self.find_error_evaluator(&synd.reverse(), &err_loc, err_loc.len() - 1)
            .reverse();

        let mut X = Polynom::new();

        for px in coef_pos.iter() {
            let l = (255 - px) as i32;
            X.push(gf::pow(2, -l))
        }

        let mut E = Polynom::with_length(msg.len());
        let mut fixed = 0;

        let err_eval_rev = err_eval.reverse();
        for (i, Xi) in X.iter().enumerate() {
            let Xi_inv = gf::inverse(*Xi);

            let mut err_loc_prime_tmp = Polynom::new();
            for (j, Xj) in X.iter().enumerate() {
                if j != i {
                    err_loc_prime_tmp.push(gf::sub(1, gf::mul(Xi_inv, *Xj)));
                }
            }

            let mut err_loc_prime = 1;
            for coef in err_loc_prime_tmp.iter() {
                err_loc_prime = gf::mul(err_loc_prime, *coef);
            }

            let y = err_eval_rev.eval(Xi_inv);
            let y = gf::mul(gf::pow(*Xi, 1), y);

            let magnitude = gf::div(y, err_loc_prime);

            let E_index = uncheck!(err_pos[i]) as usize;
            uncheck_mut!(E[E_index]) = magnitude;
            fixed += 1;
        }

        (msg.add(&E), fixed)
    }

    #[allow(non_snake_case)]
    fn find_error_locator(&self,
                          synd: &[u8],
                          erase_loc: Option<&[u8]>,
                          erase_count: usize)
                          -> Result<Polynom> {
        let (mut err_loc, mut old_loc) = if let Some(erase_loc) = erase_loc {
            (Polynom::from(erase_loc), Polynom::from(erase_loc))
        } else {
            (polynom![1], polynom![1])
        };

        let synd_shift = if synd.len() > self.ecc_len {
            synd.len() - self.ecc_len
        } else {
            0
        };

        for i in 0..(self.ecc_len - erase_count) {
            let K = if erase_loc.is_some() {
                erase_count + i + synd_shift
            } else {
                i + synd_shift
            };

            let mut delta = uncheck!(synd[K]);
            for j in 1..err_loc.len() {
                let d_index = err_loc.len() - j - 1;
                delta ^= gf::mul(err_loc[d_index], uncheck!(synd[K - j]));
            }

            old_loc.push(0);

            if delta != 0 {
                if old_loc.len() > err_loc.len() {
                    let new_loc = old_loc.scale(delta);
                    old_loc = err_loc.scale(gf::inverse(delta));
                    err_loc = new_loc;
                }

                err_loc = err_loc.add(&old_loc.scale(delta));
            }
        }

        let shift = err_loc.iter().take_while(|&&v| v == 0).count();
        let err_loc = Polynom::from(&err_loc[shift..]);

        let errs = err_loc.len() - 1;
        let errs = if erase_count > errs {
            erase_count
        } else {
            (errs - erase_count) * 2 + erase_count
        };

        if errs > self.ecc_len {
            Err(DecoderError::TooManyErrors)
        } else {
            Ok(err_loc)
        }
    }

    fn find_errors(&self, err_loc: &[u8], msg_len: usize) -> Result<Polynom> {
        let errs = err_loc.len() - 1;
        let mut err_pos = polynom![];

        for i in 0..msg_len {
            if err_loc.eval(gf::pow(2, i as i32)) == 0 {
                let x = msg_len as u8 - 1 - i as u8;
                err_pos.push(x);
            }
        }

        if err_pos.len() != errs {
            Err(DecoderError::TooManyErrors)
        } else {
            Ok(err_pos)
        }
    }

    fn forney_syndromes(&self, synd: &[u8], pos: &[u8], msg_len: usize) -> Polynom {
        let mut erase_pos_rev = Polynom::with_length(pos.len());
        for (i, x) in pos.iter().enumerate() {
            erase_pos_rev[i] = msg_len as u8 - 1 - x;
        }

        let mut fsynd = Polynom::from(&synd[1..]);

        for pos in erase_pos_rev.iter() {
            let x = gf::pow(2, *pos as i32);
            for j in 0..(fsynd.len() - 1) {
                fsynd[j] = gf::mul(fsynd[j], x) ^ fsynd[j + 1];
            }
        }

        fsynd
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use ::Encoder;

    #[test]
    fn calc_syndromes() {
        let px = [1, 2, 3, 4, 5, 6, 7, 8, 9];
        let mut encoded = Encoder::new(8).encode(&px[..]);

        assert_eq!([0; 9], *Decoder::new(8).calc_syndromes(&encoded));

        encoded[5] = 1;

        assert_eq!([0, 7, 162, 172, 245, 176, 71, 58, 180],
                   *Decoder::new(8).calc_syndromes(&encoded));
    }

    #[test]
    fn is_corrupted() {
        let px = [1, 2, 3, 4, 5, 6, 7, 8, 9];
        let mut encoded = Encoder::new(8).encode(&px[..]);

        assert_eq!(false, Decoder::new(8).is_corrupted(&encoded));

        encoded[5] = 1;

        assert_eq!(true, Decoder::new(8).is_corrupted(&encoded));
    }

    #[test]
    fn find_errata_locator() {
        let e_pos = [19, 18, 17, 14, 15, 16];
        assert_eq!([134, 207, 111, 227, 24, 150, 1],
                   *Decoder::new(6).find_errata_locator(&e_pos[..]));
    }

    #[test]
    fn find_error_evaluator() {
        let synd = [232, 103, 78, 56, 109, 59, 242, 42, 64, 0];
        let err_loc = [134, 207, 111, 227, 24, 150, 1];

        assert_eq!([148, 151, 175, 126, 68, 64, 0],
                   *Decoder::new(6).find_error_evaluator(&synd, &err_loc, 6));
    }

    #[test]
    fn correct_errata() {
        let msg = [0, 0, 0, 2, 2, 2, 119, 111, 114, 108, 100, 145, 124, 96, 105, 94, 31, 179, 149, 163];
        let synd = [0, 64, 42, 242, 59, 109, 56, 78, 103, 232];
        let err_pos = [0, 1, 2, 5, 4, 3];
        let result = [104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100, 145, 124, 96, 105, 94,
                      31, 179, 149, 163];

        assert_eq!(result,
                   *Decoder::new(err_pos.len()).correct_errata(&msg, &synd, &err_pos).0);
    }

    #[test]
    fn error_count() {
        let msg = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
        let encoder = Encoder::new(10);

        let encoded = encoder.encode(&msg[..]);
        let mut errd = *encoded;

        errd[0] = 255;
        errd[3] = 255;

        let (_correct,err) = Decoder::new(10).correct_err_count(&errd, None).unwrap();

        assert_eq!(err, 2);
    }

    #[test]
    fn find_error_locator() {
        let synd = [79, 25, 0, 160, 198, 122, 192, 169, 232];
        let nsym = 9;
        let erase_loc = None;
        let erase_count = 3;

        let result = [193, 144, 121, 1];

        let error_loc = Decoder::new(nsym).find_error_locator(&synd, erase_loc, erase_count);

        assert!(error_loc.is_ok());
        assert_eq!(result, *error_loc.unwrap());
    }

    #[test]
    fn find_errors() {
        let err_loc = [1, 121, 144, 193];
        let msg_len = 20;
        let result = [5, 4, 3];

        let err_pos = Decoder::new(6).find_errors(&err_loc, msg_len);

        assert!(err_pos.is_ok());
        assert_eq!(result, *err_pos.unwrap());

        let err_loc = [1, 134, 181];
        let msg_len = 12;

        let err_pos = Decoder::new(6).find_errors(&err_loc, msg_len);

        assert!(err_pos.is_err());
    }

    #[test]
    fn forney_syndromes() {
        let synd = [0, 64, 42, 242, 59, 109, 56, 78, 103, 232];
        let pos = [0, 1, 2];
        let nmess = 20;

        let result = [79, 25, 0, 160, 198, 122, 192, 169, 232];
        assert_eq!(result,
                   *Decoder::new(6).forney_syndromes(&synd, &pos, nmess));
    }

    #[test]
    fn decode() {
        let mut msg = [0, 2, 2, 2, 2, 2, 119, 111, 114, 108, 100, 145, 124, 96, 105, 94, 31, 179, 149, 163];
        let ecc = 9;
        let erase_pos = [0, 1, 2];

        let result = [104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100, 145, 124, 96, 105, 94,
                      31, 179, 149, 163];

        let decoder = Decoder::new(ecc);
        let decoded = decoder.correct(&mut msg[..], Some(&erase_pos)).unwrap();

        assert_eq!(result, **decoded);
    }
}