1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// -*- mode: rust; -*-
//
// This file is part of redjubjub.
// Copyright (c) 2019-2021 Zcash Foundation
// See LICENSE for licensing information.
//
// Authors:
// - Deirdre Connolly <deirdre@zfnd.org>
// - Henry de Valence <hdevalence@hdevalence.ca>

//! Performs batch RedJubjub signature verification.
//!
//! Batch verification asks whether *all* signatures in some set are valid,
//! rather than asking whether *each* of them is valid. This allows sharing
//! computations among all signature verifications, performing less work overall
//! at the cost of higher latency (the entire batch must complete), complexity of
//! caller code (which must assemble a batch of signatures across work-items),
//! and loss of the ability to easily pinpoint failing signatures.
//!

use std::convert::TryFrom;

use jubjub::*;
use rand_core::{CryptoRng, RngCore};

use crate::{private::Sealed, scalar_mul::VartimeMultiscalarMul, *};

// Shim to generate a random 128bit value in a [u64; 4], without
// importing `rand`.
fn gen_128_bits<R: RngCore + CryptoRng>(mut rng: R) -> [u64; 4] {
    let mut bytes = [0u64; 4];
    bytes[0] = rng.next_u64();
    bytes[1] = rng.next_u64();
    bytes
}

#[derive(Clone, Debug)]
enum Inner {
    SpendAuth {
        vk_bytes: VerificationKeyBytes<SpendAuth>,
        sig: Signature<SpendAuth>,
        c: Scalar,
    },
    Binding {
        vk_bytes: VerificationKeyBytes<Binding>,
        sig: Signature<Binding>,
        c: Scalar,
    },
}

/// A batch verification item.
///
/// This struct exists to allow batch processing to be decoupled from the
/// lifetime of the message. This is useful when using the batch verification API
/// in an async context.
#[derive(Clone, Debug)]
pub struct Item {
    inner: Inner,
}

impl<'msg, M: AsRef<[u8]>>
    From<(
        VerificationKeyBytes<SpendAuth>,
        Signature<SpendAuth>,
        &'msg M,
    )> for Item
{
    fn from(
        (vk_bytes, sig, msg): (
            VerificationKeyBytes<SpendAuth>,
            Signature<SpendAuth>,
            &'msg M,
        ),
    ) -> Self {
        // Compute c now to avoid dependency on the msg lifetime.
        let c = HStar::default()
            .update(&sig.r_bytes[..])
            .update(&vk_bytes.bytes[..])
            .update(msg)
            .finalize();
        Self {
            inner: Inner::SpendAuth { vk_bytes, sig, c },
        }
    }
}

impl<'msg, M: AsRef<[u8]>> From<(VerificationKeyBytes<Binding>, Signature<Binding>, &'msg M)>
    for Item
{
    fn from(
        (vk_bytes, sig, msg): (VerificationKeyBytes<Binding>, Signature<Binding>, &'msg M),
    ) -> Self {
        // Compute c now to avoid dependency on the msg lifetime.
        let c = HStar::default()
            .update(&sig.r_bytes[..])
            .update(&vk_bytes.bytes[..])
            .update(msg)
            .finalize();
        Self {
            inner: Inner::Binding { vk_bytes, sig, c },
        }
    }
}

impl Item {
    /// Perform non-batched verification of this `Item`.
    ///
    /// This is useful (in combination with `Item::clone`) for implementing fallback
    /// logic when batch verification fails. In contrast to
    /// [`VerificationKey::verify`](crate::VerificationKey::verify), which requires
    /// borrowing the message data, the `Item` type is unlinked from the lifetime of
    /// the message.
    #[allow(non_snake_case)]
    pub fn verify_single(self) -> Result<(), Error> {
        match self.inner {
            Inner::Binding { vk_bytes, sig, c } => VerificationKey::<Binding>::try_from(vk_bytes)
                .and_then(|vk| vk.verify_prehashed(&sig, c)),
            Inner::SpendAuth { vk_bytes, sig, c } => {
                VerificationKey::<SpendAuth>::try_from(vk_bytes)
                    .and_then(|vk| vk.verify_prehashed(&sig, c))
            }
        }
    }
}

#[derive(Default)]
/// A batch verification context.
pub struct Verifier {
    /// Signature data queued for verification.
    signatures: Vec<Item>,
}

impl Verifier {
    /// Construct a new batch verifier.
    pub fn new() -> Verifier {
        Verifier::default()
    }

    /// Queue an Item for verification.
    pub fn queue<I: Into<Item>>(&mut self, item: I) {
        self.signatures.push(item.into());
    }

    /// Perform batch verification, returning `Ok(())` if all signatures were
    /// valid and `Err` otherwise.
    ///
    /// The batch verification equation is:
    ///
    /// h_G * -[sum(z_i * s_i)]P_G + sum(\[z_i\]R_i + [z_i * c_i]VK_i) = 0_G
    ///
    /// which we split out into:
    ///
    /// h_G * -[sum(z_i * s_i)]P_G + sum(\[z_i\]R_i) + sum([z_i * c_i]VK_i) = 0_G
    ///
    /// so that we can use multiscalar multiplication speedups.
    ///
    /// where for each signature i,
    /// - VK_i is the verification key;
    /// - R_i is the signature's R value;
    /// - s_i is the signature's s value;
    /// - c_i is the hash of the message and other data;
    /// - z_i is a random 128-bit Scalar;
    /// - h_G is the cofactor of the group;
    /// - P_G is the generator of the subgroup;
    ///
    /// Since RedJubjub uses different subgroups for different types
    /// of signatures, SpendAuth's and Binding's, we need to have yet
    /// another point and associated scalar accumulator for all the
    /// signatures of each type in our batch, but we can still
    /// amortize computation nicely in one multiscalar multiplication:
    ///
    /// h_G * ( [-sum(z_i * s_i): i_type == SpendAuth]P_SpendAuth + [-sum(z_i * s_i): i_type == Binding]P_Binding + sum(\[z_i\]R_i) + sum([z_i * c_i]VK_i) ) = 0_G
    ///
    /// As follows elliptic curve scalar multiplication convention,
    /// scalar variables are lowercase and group point variables
    /// are uppercase. This does not exactly match the RedDSA
    /// notation in the [protocol specification §B.1][ps].
    ///
    /// [ps]: https://zips.z.cash/protocol/protocol.pdf#reddsabatchverify
    #[allow(non_snake_case)]
    pub fn verify<R: RngCore + CryptoRng>(self, mut rng: R) -> Result<(), Error> {
        let n = self.signatures.len();

        let mut VK_coeffs = Vec::with_capacity(n);
        let mut VKs = Vec::with_capacity(n);
        let mut R_coeffs = Vec::with_capacity(self.signatures.len());
        let mut Rs = Vec::with_capacity(self.signatures.len());
        let mut P_spendauth_coeff = Scalar::zero();
        let mut P_binding_coeff = Scalar::zero();

        for item in self.signatures.iter() {
            let (s_bytes, r_bytes, c) = match item.inner {
                Inner::SpendAuth { sig, c, .. } => (sig.s_bytes, sig.r_bytes, c),
                Inner::Binding { sig, c, .. } => (sig.s_bytes, sig.r_bytes, c),
            };

            let s = {
                // XXX-jubjub: should not use CtOption here
                let maybe_scalar = Scalar::from_bytes(&s_bytes);
                if maybe_scalar.is_some().into() {
                    maybe_scalar.unwrap()
                } else {
                    return Err(Error::InvalidSignature);
                }
            };

            let R = {
                // XXX-jubjub: should not use CtOption here
                // XXX-jubjub: inconsistent ownership in from_bytes
                let maybe_point = AffinePoint::from_bytes(r_bytes);
                if maybe_point.is_some().into() {
                    jubjub::ExtendedPoint::from(maybe_point.unwrap())
                } else {
                    return Err(Error::InvalidSignature);
                }
            };

            let VK = match item.inner {
                Inner::SpendAuth { vk_bytes, .. } => {
                    VerificationKey::<SpendAuth>::try_from(vk_bytes.bytes)?.point
                }
                Inner::Binding { vk_bytes, .. } => {
                    VerificationKey::<Binding>::try_from(vk_bytes.bytes)?.point
                }
            };

            let z = Scalar::from_raw(gen_128_bits(&mut rng));

            let P_coeff = z * s;
            match item.inner {
                Inner::SpendAuth { .. } => {
                    P_spendauth_coeff -= P_coeff;
                }
                Inner::Binding { .. } => {
                    P_binding_coeff -= P_coeff;
                }
            };

            R_coeffs.push(z);
            Rs.push(R);

            VK_coeffs.push(Scalar::zero() + (z * c));
            VKs.push(VK);
        }

        use std::iter::once;

        let scalars = once(&P_spendauth_coeff)
            .chain(once(&P_binding_coeff))
            .chain(VK_coeffs.iter())
            .chain(R_coeffs.iter());

        let basepoints = [SpendAuth::basepoint(), Binding::basepoint()];
        let points = basepoints.iter().chain(VKs.iter()).chain(Rs.iter());

        let check = ExtendedPoint::vartime_multiscalar_mul(scalars, points);

        if check.is_small_order().into() {
            Ok(())
        } else {
            Err(Error::InvalidSignature)
        }
    }
}