1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
//! # RealFFT: Real-to-complex forward FFT and complex-to-real inverse FFT based on RustFFT
//!
//! This library is a wrapper for [RustFFT](https://crates.io/crates/rustfft)
//! that enables fast and convenient FFT of real-valued data.
//! The API is designed to be as similar as possible to RustFFT.
//!
//! Using this library instead of RustFFT directly avoids the need of converting
//! real-valued data to complex before performing a FFT.
//! If the length is even, it also enables faster computations by using a complex FFT of half the length.
//! It then packs a real-valued signal of length N into an N/2 long complex buffer,
//! which is transformed using a standard complex-to-complex FFT.
//! The FFT result is then post-processed to give only the first half of the complex spectrum,
//! as an N/2+1 long complex vector.
//!
//! The inverse FFT goes through the same steps backwards,
//! to transform a complex spectrum of length N/2+1 to a real-valued signal of length N.
//!
//! The speed increase compared to just converting the input to a length N complex vector
//! and using a length N complex-to-complex FFT depends on the length of the input data.
//! The largest improvements are for longer FFTs and for lengths over around 1000 elements
//! there is an improvement of about a factor 2.
//! The difference shrinks for shorter lengths,
//! and around 30 elements there is no longer any difference.
//!
//! ## Why use real-to-complex FFT?
//! ### Using a complex-to-complex FFT
//! A simple way to transform a real valued signal is to convert it to complex,
//! and then use a complex-to-complex FFT.
//!
//! Let's assume `x` is a 6 element long real vector:
//! ```text
//! x = [x0r, x1r, x2r, x3r, x4r, x5r]
//! ```
//!
//! We now convert `x` to complex by adding an imaginary part with value zero.
//! Using the notation `(xNr, xNi)` for the complex value `xN`, this becomes:
//! ```text
//! x_c = [(x0r, 0), (x1r, 0), (x2r, 0), (x3r, 0), (x4r, 0), (x5r, 0)]
//! ```
//!
//! Performing a normal complex FFT, the result of `FFT(x_c)` is:
//! ```text
//! FFT(x_c) = [(X0r, X0i), (X1r, X1i), (X2r, X2i), (X3r, X3i), (X4r, X4i), (X5r, X5i)]
//! ```
//!
//! But because our `x_c` is real-valued (all imaginary parts are zero), some of this becomes redundant:
//! ```text
//! FFT(x_c) = [(X0r, 0), (X1r, X1i), (X2r, X2i), (X3r, 0), (X2r, -X2i), (X1r, -X1i)]
//! ```
//!
//! The last two values are the complex conjugates of `X1` and `X2`. Additionally, `X0i` and `X3i` are zero.
//! As we can see, the output contains 6 independent values, and the rest is redundant.
//! But it still takes time for the FFT to calculate the redundant values.
//! Converting the input data to complex also takes a little bit of time.
//!
//! If the length of `x` instead had been 7, result would have been:
//! ```text
//! FFT(x_c) = [(X0r, 0), (X1r, X1i), (X2r, X2i), (X3r, X3i), (X3r, -X3i), (X2r, -X2i), (X1r, -X1i)]
//! ```
//!
//! The result is similar, but this time there is no zero at `X3i`.
//! Also in this case we got the same number of independent values as we started with.
//!
//! ### Real-to-complex
//! Using a real-to-complex FFT removes the need for converting the input data to complex.
//! It also avoids calculating the redundant output values.
//!
//! The result for 6 elements is:
//! ```text
//! RealFFT(x) = [(X0r, 0), (X1r, X1i), (X2r, X2i), (X3r, 0)]
//! ```
//!
//! The result for 7 elements is:
//! ```text
//! RealFFT(x) = [(X0r, 0), (X1r, X1i), (X2r, X2i), (X3r, X3i)]
//! ```
//!
//! This is the data layout output by the real-to-complex FFT,
//! and the one expected as input to the complex-to-real inverse FFT.
//!
//! ## Scaling
//! RealFFT matches the behaviour of RustFFT and does not normalize the output of either forward or inverse FFT.
//! To get normalized results, each element must be scaled by `1/sqrt(length)`,
//! where `length` is the length of the real-valued signal.
//! If the processing involves both a forward and an inverse FFT step,
//! it is advisable to merge the two normalization steps to a single, by scaling by `1/length`.
//!
//! ## Documentation
//!
//! The full documentation can be generated by rustdoc. To generate and view it run:
//! ```text
//! cargo doc --open
//! ```
//!
//! ## Benchmarks
//!
//! To run a set of benchmarks comparing real-to-complex FFT with standard complex-to-complex, type:
//! ```text
//! cargo bench
//! ```
//! The results are printed while running, and are compiled into an html report containing much more details.
//! To view, open `target/criterion/report/index.html` in a browser.
//!
//! ## Example
//! Transform a signal, and then inverse transform the result.
//! ```
//! use realfft::RealFftPlanner;
//! use rustfft::num_complex::Complex;
//! use rustfft::num_traits::Zero;
//!
//! let length = 256;
//!
//! // make a planner
//! let mut real_planner = RealFftPlanner::<f64>::new();
//!
//! // create a FFT
//! let r2c = real_planner.plan_fft_forward(length);
//! // make a dummy real-valued signal (filled with zeros)
//! let mut indata = r2c.make_input_vec();
//! // make a vector for storing the spectrum
//! let mut spectrum = r2c.make_output_vec();
//!
//! // Are they the length we expect?
//! assert_eq!(indata.len(), length);
//! assert_eq!(spectrum.len(), length/2+1);
//!
//! // forward transform the signal
//! r2c.process(&mut indata, &mut spectrum).unwrap();
//!
//! // create an inverse FFT
//! let c2r = real_planner.plan_fft_inverse(length);
//!
//! // create a vector for storing the output
//! let mut outdata = c2r.make_output_vec();
//! assert_eq!(outdata.len(), length);
//!
//! // inverse transform the spectrum back to a real-valued signal
//! c2r.process(&mut spectrum, &mut outdata).unwrap();
//! ```
//!
//! ### Versions
//! - 3.3.0: Add method for getting the length of the complex input/output.
//!          Bugfix: clean up numerical noise in the zero imaginary components.
//! - 3.2.0: Allow scratch buffer to be larger than needed.
//! - 3.1.0: Update to RustFFT 6.1 with Neon support.
//! - 3.0.2: Fix confusing typos in errors about scratch length.
//! - 3.0.1: More helpful error messages, fix confusing typos.
//! - 3.0.0: Improved error reporting.
//! - 2.0.1: Minor bugfix.
//! - 2.0.0: Update RustFFT to 6.0.0 and num-complex to 0.4.0.
//! - 1.1.0: Add missing Sync+Send.
//! - 1.0.0: First version with new api.
//!
//! ### Compatibility
//!
//! The `realfft` crate has the same rustc version requirements as RustFFT.
//! The minimum rustc version is 1.37 on all platforms except AArch64.
//! On AArch64 the minimum rustc version is 1.61.

pub use rustfft::num_complex;
pub use rustfft::num_traits;
pub use rustfft::FftNum;

use rustfft::num_complex::Complex;
use rustfft::num_traits::Zero;
use rustfft::FftPlanner;
use std::collections::HashMap;
use std::error;
use std::fmt;
use std::sync::Arc;

type Res<T> = Result<T, FftError>;

/// Custom error returned by FFTs
pub enum FftError {
    /// The input buffer has the wrong size. The transform was not performed.
    ///
    /// The first member of the tuple is the expected size and the second member is the received
    /// size.
    InputBuffer(usize, usize),
    /// The output buffer has the wrong size. The transform was not performed.
    ///
    /// The first member of the tuple is the expected size and the second member is the received
    /// size.
    OutputBuffer(usize, usize),
    /// The scratch buffer has the wrong size. The transform was not performed.
    ///
    /// The first member of the tuple is the minimum size and the second member is the received
    /// size.
    ScratchBuffer(usize, usize),
    /// The input data contained a non-zero imaginary part where there should have been a zero.
    /// The transform was performed, but the result may not be correct.
    ///
    /// The first member of the tuple represents the first index of the complex buffer and the
    /// second member represents the last index of the complex buffer. The values are set to true
    /// if the corresponding complex value contains a non-zero imaginary part.
    InputValues(bool, bool),
}

impl FftError {
    fn fmt_internal(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let desc = match self {
            Self::InputBuffer(expected, got) => {
                format!("Wrong length of input, expected {}, got {}", expected, got)
            }
            Self::OutputBuffer(expected, got) => {
                format!("Wrong length of output, expected {}, got {}", expected, got)
            }
            Self::ScratchBuffer(expected, got) => {
                format!(
                    "Scratch buffer of size {} is too small, must be at least {} long",
                    got, expected
                )
            }
            Self::InputValues(first, last) => match (first, last) {
                (true, false) => "Imaginary part of first value was non-zero.".to_string(),
                (false, true) => "Imaginary part of last value was non-zero.".to_string(),
                (true, true) => {
                    "Imaginary parts of both first and last values were non-zero.".to_string()
                }
                (false, false) => unreachable!(),
            },
        };
        write!(f, "{}", desc)
    }
}

impl fmt::Debug for FftError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.fmt_internal(f)
    }
}

impl fmt::Display for FftError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.fmt_internal(f)
    }
}

impl error::Error for FftError {}

fn compute_twiddle<T: FftNum>(index: usize, fft_len: usize) -> Complex<T> {
    let constant = -2f64 * std::f64::consts::PI / fft_len as f64;
    let angle = constant * index as f64;
    Complex {
        re: T::from_f64(angle.cos()).unwrap(),
        im: T::from_f64(angle.sin()).unwrap(),
    }
}

pub struct RealToComplexOdd<T> {
    length: usize,
    fft: std::sync::Arc<dyn rustfft::Fft<T>>,
    scratch_len: usize,
}

pub struct RealToComplexEven<T> {
    twiddles: Vec<Complex<T>>,
    length: usize,
    fft: std::sync::Arc<dyn rustfft::Fft<T>>,
    scratch_len: usize,
}

pub struct ComplexToRealOdd<T> {
    length: usize,
    fft: std::sync::Arc<dyn rustfft::Fft<T>>,
    scratch_len: usize,
}

pub struct ComplexToRealEven<T> {
    twiddles: Vec<Complex<T>>,
    length: usize,
    fft: std::sync::Arc<dyn rustfft::Fft<T>>,
    scratch_len: usize,
}

/// A forward FFT that takes a real-valued input signal of length N
/// and transforms it to a complex spectrum of length N/2+1.
#[allow(clippy::len_without_is_empty)]
pub trait RealToComplex<T>: Sync + Send {
    /// Transform a signal of N real-valued samples,
    /// storing the resulting complex spectrum in the N/2+1
    /// (with N/2 rounded down) element long output slice.
    /// The input buffer is used as scratch space,
    /// so the contents of input should be considered garbage after calling.
    /// It also allocates additional scratch space as needed.
    /// An error is returned if any of the given slices has the wrong length.
    fn process(&self, input: &mut [T], output: &mut [Complex<T>]) -> Res<()>;

    /// Transform a signal of N real-valued samples,
    /// similar to [`process()`](RealToComplex::process).
    /// The difference is that this method uses the provided
    /// scratch buffer instead of allocating new scratch space.
    /// This is faster if the same scratch buffer is used for multiple calls.
    fn process_with_scratch(
        &self,
        input: &mut [T],
        output: &mut [Complex<T>],
        scratch: &mut [Complex<T>],
    ) -> Res<()>;

    /// Get the minimum length of the scratch buffer needed for `process_with_scratch`.
    fn get_scratch_len(&self) -> usize;

    /// The FFT length.
    /// Get the length of the real signal that this FFT takes as input.
    fn len(&self) -> usize;

    /// Get the number of complex data points that this FFT returns.
    fn complex_len(&self) -> usize {
        self.len() / 2 + 1
    }

    /// Convenience method to make an input vector of the right type and length.
    fn make_input_vec(&self) -> Vec<T>;

    /// Convenience method to make an output vector of the right type and length.
    fn make_output_vec(&self) -> Vec<Complex<T>>;

    /// Convenience method to make a scratch vector of the right type and length.
    fn make_scratch_vec(&self) -> Vec<Complex<T>>;
}

/// An inverse FFT that takes a complex spectrum of length N/2+1
/// and transforms it to a real-valued signal of length N.
#[allow(clippy::len_without_is_empty)]
pub trait ComplexToReal<T>: Sync + Send {
    /// Inverse transform a complex spectrum corresponding to a real-valued signal of length N.
    /// The input is a slice of complex values with length N/2+1 (with N/2 rounded down).
    /// The resulting real-valued signal is stored in the output slice of length N.
    /// The input buffer is used as scratch space,
    /// so the contents of input should be considered garbage after calling.
    /// It also allocates additional scratch space as needed.
    /// An error is returned if any of the given slices has the wrong length.
    /// If the input data is invalid, meaning that one of the positions that should
    /// contain a zero holds a non-zero value, the transform is still performed.
    /// The function then returns an `FftError::InputValues` error to tell that the
    /// result may not be correct.
    fn process(&self, input: &mut [Complex<T>], output: &mut [T]) -> Res<()>;

    /// Inverse transform a complex spectrum,
    /// similar to [`process()`](ComplexToReal::process).
    /// The difference is that this method uses the provided
    /// scratch buffer instead of allocating new scratch space.
    /// This is faster if the same scratch buffer is used for multiple calls.
    fn process_with_scratch(
        &self,
        input: &mut [Complex<T>],
        output: &mut [T],
        scratch: &mut [Complex<T>],
    ) -> Res<()>;

    /// Get the minimum length of the scratch space needed for `process_with_scratch`.
    fn get_scratch_len(&self) -> usize;

    /// The FFT length.
    /// Get the length of the real-valued signal that this FFT returns.
    fn len(&self) -> usize;

    /// Get the length of the slice slice of complex values that this FFT accepts as input.
    fn complex_len(&self) -> usize {
        self.len() / 2 + 1
    }

    /// Convenience method to make an input vector of the right type and length.
    fn make_input_vec(&self) -> Vec<Complex<T>>;

    /// Convenience method to make an output vector of the right type and length.
    fn make_output_vec(&self) -> Vec<T>;

    /// Convenience method to make a scratch vector of the right type and length.
    fn make_scratch_vec(&self) -> Vec<Complex<T>>;
}

fn zip3<A, B, C>(a: A, b: B, c: C) -> impl Iterator<Item = (A::Item, B::Item, C::Item)>
where
    A: IntoIterator,
    B: IntoIterator,
    C: IntoIterator,
{
    a.into_iter()
        .zip(b.into_iter().zip(c))
        .map(|(x, (y, z))| (x, y, z))
}

/// A planner is used to create FFTs.
/// It caches results internally,
/// so when making more than one FFT it is advisable to reuse the same planner.
pub struct RealFftPlanner<T: FftNum> {
    planner: FftPlanner<T>,
    r2c_cache: HashMap<usize, Arc<dyn RealToComplex<T>>>,
    c2r_cache: HashMap<usize, Arc<dyn ComplexToReal<T>>>,
}

impl<T: FftNum> RealFftPlanner<T> {
    /// Create a new planner.
    pub fn new() -> Self {
        let planner = FftPlanner::<T>::new();
        Self {
            r2c_cache: HashMap::new(),
            c2r_cache: HashMap::new(),
            planner,
        }
    }

    /// Plan a real-to-complex forward FFT. Returns the FFT in a shared reference.
    /// If requesting a second forward FFT of the same length,
    /// the planner will return a new reference to the already existing one.
    pub fn plan_fft_forward(&mut self, len: usize) -> Arc<dyn RealToComplex<T>> {
        if let Some(fft) = self.r2c_cache.get(&len) {
            Arc::clone(fft)
        } else {
            let fft = if len % 2 > 0 {
                Arc::new(RealToComplexOdd::new(len, &mut self.planner)) as Arc<dyn RealToComplex<T>>
            } else {
                Arc::new(RealToComplexEven::new(len, &mut self.planner))
                    as Arc<dyn RealToComplex<T>>
            };
            self.r2c_cache.insert(len, Arc::clone(&fft));
            fft
        }
    }

    /// Plan a complex-to-real inverse FFT. Returns the FFT in a shared reference.
    /// If requesting a second inverse FFT of the same length,
    /// the planner will return a new reference to the already existing one.
    pub fn plan_fft_inverse(&mut self, len: usize) -> Arc<dyn ComplexToReal<T>> {
        if let Some(fft) = self.c2r_cache.get(&len) {
            Arc::clone(fft)
        } else {
            let fft = if len % 2 > 0 {
                Arc::new(ComplexToRealOdd::new(len, &mut self.planner)) as Arc<dyn ComplexToReal<T>>
            } else {
                Arc::new(ComplexToRealEven::new(len, &mut self.planner))
                    as Arc<dyn ComplexToReal<T>>
            };
            self.c2r_cache.insert(len, Arc::clone(&fft));
            fft
        }
    }
}

impl<T: FftNum> Default for RealFftPlanner<T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<T: FftNum> RealToComplexOdd<T> {
    /// Create a new RealToComplex forward FFT for real-valued input data of a given length,
    /// and uses the given FftPlanner to build the inner FFT.
    /// Panics if the length is not odd.
    pub fn new(length: usize, fft_planner: &mut FftPlanner<T>) -> Self {
        if length % 2 == 0 {
            panic!("Length must be odd, got {}", length,);
        }
        let fft = fft_planner.plan_fft_forward(length);
        let scratch_len = fft.get_inplace_scratch_len() + length;
        RealToComplexOdd {
            length,
            fft,
            scratch_len,
        }
    }
}

impl<T: FftNum> RealToComplex<T> for RealToComplexOdd<T> {
    fn process(&self, input: &mut [T], output: &mut [Complex<T>]) -> Res<()> {
        let mut scratch = self.make_scratch_vec();
        self.process_with_scratch(input, output, &mut scratch)
    }

    fn process_with_scratch(
        &self,
        input: &mut [T],
        output: &mut [Complex<T>],
        scratch: &mut [Complex<T>],
    ) -> Res<()> {
        if input.len() != self.length {
            return Err(FftError::InputBuffer(self.length, input.len()));
        }
        let expected_output_buffer_size = self.complex_len();
        if output.len() != expected_output_buffer_size {
            return Err(FftError::OutputBuffer(
                expected_output_buffer_size,
                output.len(),
            ));
        }
        if scratch.len() < (self.scratch_len) {
            return Err(FftError::ScratchBuffer(self.scratch_len, scratch.len()));
        }
        let (buffer, fft_scratch) = scratch.split_at_mut(self.length);

        for (val, buf) in input.iter().zip(buffer.iter_mut()) {
            *buf = Complex::new(*val, T::zero());
        }
        // FFT and store result in buffer_out
        self.fft.process_with_scratch(buffer, fft_scratch);
        output.copy_from_slice(&buffer[0..self.complex_len()]);
        if let Some(elem) = output.first_mut() {
            elem.im = T::zero();
        }
        Ok(())
    }

    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }

    fn len(&self) -> usize {
        self.length
    }

    fn make_input_vec(&self) -> Vec<T> {
        vec![T::zero(); self.len()]
    }

    fn make_output_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.complex_len()]
    }

    fn make_scratch_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.get_scratch_len()]
    }
}

impl<T: FftNum> RealToComplexEven<T> {
    /// Create a new RealToComplex forward FFT for real-valued input data of a given length,
    /// and uses the given FftPlanner to build the inner FFT.
    /// Panics if the length is not even.
    pub fn new(length: usize, fft_planner: &mut FftPlanner<T>) -> Self {
        if length % 2 > 0 {
            panic!("Length must be even, got {}", length,);
        }
        let twiddle_count = if length % 4 == 0 {
            length / 4
        } else {
            length / 4 + 1
        };
        let twiddles: Vec<Complex<T>> = (1..twiddle_count)
            .map(|i| compute_twiddle(i, length) * T::from_f64(0.5).unwrap())
            .collect();
        let fft = fft_planner.plan_fft_forward(length / 2);
        let scratch_len = fft.get_outofplace_scratch_len();
        RealToComplexEven {
            twiddles,
            length,
            fft,
            scratch_len,
        }
    }
}

impl<T: FftNum> RealToComplex<T> for RealToComplexEven<T> {
    fn process(&self, input: &mut [T], output: &mut [Complex<T>]) -> Res<()> {
        let mut scratch = self.make_scratch_vec();
        self.process_with_scratch(input, output, &mut scratch)
    }

    fn process_with_scratch(
        &self,
        input: &mut [T],
        output: &mut [Complex<T>],
        scratch: &mut [Complex<T>],
    ) -> Res<()> {
        if input.len() != self.length {
            return Err(FftError::InputBuffer(self.length, input.len()));
        }
        let expected_output_buffer_size = self.complex_len();
        if output.len() != expected_output_buffer_size {
            return Err(FftError::OutputBuffer(
                expected_output_buffer_size,
                output.len(),
            ));
        }
        if scratch.len() < (self.scratch_len) {
            return Err(FftError::ScratchBuffer(self.scratch_len, scratch.len()));
        }

        let fftlen = self.length / 2;
        let buf_in = unsafe {
            let ptr = input.as_mut_ptr() as *mut Complex<T>;
            let len = input.len();
            std::slice::from_raw_parts_mut(ptr, len / 2)
        };

        // FFT and store result in buffer_out
        self.fft
            .process_outofplace_with_scratch(buf_in, &mut output[0..fftlen], scratch);
        let (mut output_left, mut output_right) = output.split_at_mut(output.len() / 2);

        // The first and last element don't require any twiddle factors, so skip that work
        match (output_left.first_mut(), output_right.last_mut()) {
            (Some(first_element), Some(last_element)) => {
                // The first and last elements are just a sum and difference of the first value's real and imaginary values
                let first_value = *first_element;
                *first_element = Complex {
                    re: first_value.re + first_value.im,
                    im: T::zero(),
                };
                *last_element = Complex {
                    re: first_value.re - first_value.im,
                    im: T::zero(),
                };

                // Chop the first and last element off of our slices so that the loop below doesn't have to deal with them
                output_left = &mut output_left[1..];
                let right_len = output_right.len();
                output_right = &mut output_right[..right_len - 1];
            }
            _ => {
                return Ok(());
            }
        }
        // Loop over the remaining elements and apply twiddle factors on them
        for (twiddle, out, out_rev) in zip3(
            self.twiddles.iter(),
            output_left.iter_mut(),
            output_right.iter_mut().rev(),
        ) {
            let sum = *out + *out_rev;
            let diff = *out - *out_rev;
            let half = T::from_f64(0.5).unwrap();
            // Apply twiddle factors. Theoretically we'd have to load 2 separate twiddle factors here, one for the beginning
            // and one for the end. But the twiddle factor for the end is just the twiddle for the beginning, with the
            // real part negated. Since it's the same twiddle, we can factor out a ton of math ops and cut the number of
            // multiplications in half.
            let twiddled_re_sum = sum * twiddle.re;
            let twiddled_im_sum = sum * twiddle.im;
            let twiddled_re_diff = diff * twiddle.re;
            let twiddled_im_diff = diff * twiddle.im;
            let half_sum_re = half * sum.re;
            let half_diff_im = half * diff.im;

            let output_twiddled_real = twiddled_re_sum.im + twiddled_im_diff.re;
            let output_twiddled_im = twiddled_im_sum.im - twiddled_re_diff.re;

            // We finally have all the data we need to write the transformed data back out where we found it.
            *out = Complex {
                re: half_sum_re + output_twiddled_real,
                im: half_diff_im + output_twiddled_im,
            };

            *out_rev = Complex {
                re: half_sum_re - output_twiddled_real,
                im: output_twiddled_im - half_diff_im,
            };
        }

        // If the output len is odd, the loop above can't postprocess the centermost element, so handle that separately.
        if output.len() % 2 == 1 {
            if let Some(center_element) = output.get_mut(output.len() / 2) {
                center_element.im = -center_element.im;
            }
        }
        Ok(())
    }
    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }

    fn len(&self) -> usize {
        self.length
    }

    fn make_input_vec(&self) -> Vec<T> {
        vec![T::zero(); self.len()]
    }

    fn make_output_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.complex_len()]
    }

    fn make_scratch_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.get_scratch_len()]
    }
}

impl<T: FftNum> ComplexToRealOdd<T> {
    /// Create a new ComplexToRealOdd inverse FFT for complex input spectra.
    /// The `length` parameter refers to the length of the resulting real-valued signal.
    /// Uses the given FftPlanner to build the inner FFT.
    /// Panics if the length is not odd.
    pub fn new(length: usize, fft_planner: &mut FftPlanner<T>) -> Self {
        if length % 2 == 0 {
            panic!("Length must be odd, got {}", length,);
        }
        let fft = fft_planner.plan_fft_inverse(length);
        let scratch_len = length + fft.get_inplace_scratch_len();
        ComplexToRealOdd {
            length,
            fft,
            scratch_len,
        }
    }
}

impl<T: FftNum> ComplexToReal<T> for ComplexToRealOdd<T> {
    fn process(&self, input: &mut [Complex<T>], output: &mut [T]) -> Res<()> {
        let mut scratch = self.make_scratch_vec();
        self.process_with_scratch(input, output, &mut scratch)
    }

    fn process_with_scratch(
        &self,
        input: &mut [Complex<T>],
        output: &mut [T],
        scratch: &mut [Complex<T>],
    ) -> Res<()> {
        let expected_input_buffer_size = self.complex_len();
        if input.len() != expected_input_buffer_size {
            return Err(FftError::InputBuffer(
                expected_input_buffer_size,
                input.len(),
            ));
        }
        if output.len() != self.length {
            return Err(FftError::OutputBuffer(self.length, output.len()));
        }
        if scratch.len() < (self.scratch_len) {
            return Err(FftError::ScratchBuffer(self.scratch_len, scratch.len()));
        }

        let first_invalid = if input[0].im != T::from_f64(0.0).unwrap() {
            input[0].im = T::from_f64(0.0).unwrap();
            true
        } else {
            false
        };

        let (buffer, fft_scratch) = scratch.split_at_mut(self.length);

        buffer[0..input.len()].copy_from_slice(input);
        for (buf, val) in buffer
            .iter_mut()
            .rev()
            .take(self.length / 2)
            .zip(input.iter().skip(1))
        {
            *buf = val.conj();
        }
        self.fft.process_with_scratch(buffer, fft_scratch);
        for (val, out) in buffer.iter().zip(output.iter_mut()) {
            *out = val.re;
        }
        if first_invalid {
            return Err(FftError::InputValues(true, false));
        }
        Ok(())
    }

    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }

    fn len(&self) -> usize {
        self.length
    }

    fn make_input_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.complex_len()]
    }

    fn make_output_vec(&self) -> Vec<T> {
        vec![T::zero(); self.len()]
    }

    fn make_scratch_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.get_scratch_len()]
    }
}

impl<T: FftNum> ComplexToRealEven<T> {
    /// Create a new ComplexToRealEven inverse FFT for complex input spectra.
    /// The `length` parameter refers to the length of the resulting real-valued signal.
    /// Uses the given FftPlanner to build the inner FFT.
    /// Panics if the length is not even.
    pub fn new(length: usize, fft_planner: &mut FftPlanner<T>) -> Self {
        if length % 2 > 0 {
            panic!("Length must be even, got {}", length,);
        }
        let twiddle_count = if length % 4 == 0 {
            length / 4
        } else {
            length / 4 + 1
        };
        let twiddles: Vec<Complex<T>> = (1..twiddle_count)
            .map(|i| compute_twiddle(i, length).conj())
            .collect();
        let fft = fft_planner.plan_fft_inverse(length / 2);
        let scratch_len = fft.get_outofplace_scratch_len();
        ComplexToRealEven {
            twiddles,
            length,
            fft,
            scratch_len,
        }
    }
}
impl<T: FftNum> ComplexToReal<T> for ComplexToRealEven<T> {
    fn process(&self, input: &mut [Complex<T>], output: &mut [T]) -> Res<()> {
        let mut scratch = self.make_scratch_vec();
        self.process_with_scratch(input, output, &mut scratch)
    }

    fn process_with_scratch(
        &self,
        input: &mut [Complex<T>],
        output: &mut [T],
        scratch: &mut [Complex<T>],
    ) -> Res<()> {
        let expected_input_buffer_size = self.complex_len();
        if input.len() != expected_input_buffer_size {
            return Err(FftError::InputBuffer(
                expected_input_buffer_size,
                input.len(),
            ));
        }
        if output.len() != self.length {
            return Err(FftError::OutputBuffer(self.length, output.len()));
        }
        if scratch.len() < (self.scratch_len) {
            return Err(FftError::ScratchBuffer(self.scratch_len, scratch.len()));
        }
        if input.is_empty() {
            return Ok(());
        }
        let first_invalid = if input[0].im != T::from_f64(0.0).unwrap() {
            input[0].im = T::from_f64(0.0).unwrap();
            true
        } else {
            false
        };
        let last_invalid = if input[input.len() - 1].im != T::from_f64(0.0).unwrap() {
            input[input.len() - 1].im = T::from_f64(0.0).unwrap();
            true
        } else {
            false
        };

        let (mut input_left, mut input_right) = input.split_at_mut(input.len() / 2);

        // We have to preprocess the input in-place before we send it to the FFT.
        // The first and centermost values have to be preprocessed separately from the rest, so do that now.
        match (input_left.first_mut(), input_right.last_mut()) {
            (Some(first_input), Some(last_input)) => {
                let first_sum = *first_input + *last_input;
                let first_diff = *first_input - *last_input;

                *first_input = Complex {
                    re: first_sum.re - first_sum.im,
                    im: first_diff.re - first_diff.im,
                };

                input_left = &mut input_left[1..];
                let right_len = input_right.len();
                input_right = &mut input_right[..right_len - 1];
            }
            _ => return Ok(()),
        };

        // now, in a loop, preprocess the rest of the elements 2 at a time.
        for (twiddle, fft_input, fft_input_rev) in zip3(
            self.twiddles.iter(),
            input_left.iter_mut(),
            input_right.iter_mut().rev(),
        ) {
            let sum = *fft_input + *fft_input_rev;
            let diff = *fft_input - *fft_input_rev;

            // Apply twiddle factors. Theoretically we'd have to load 2 separate twiddle factors here, one for the beginning
            // and one for the end. But the twiddle factor for the end is just the twiddle for the beginning, with the
            // real part negated. Since it's the same twiddle, we can factor out a ton of math ops and cut the number of
            // multiplications in half.
            let twiddled_re_sum = sum * twiddle.re;
            let twiddled_im_sum = sum * twiddle.im;
            let twiddled_re_diff = diff * twiddle.re;
            let twiddled_im_diff = diff * twiddle.im;

            let output_twiddled_real = twiddled_re_sum.im + twiddled_im_diff.re;
            let output_twiddled_im = twiddled_im_sum.im - twiddled_re_diff.re;

            // We finally have all the data we need to write our preprocessed data back where we got it from.
            *fft_input = Complex {
                re: sum.re - output_twiddled_real,
                im: diff.im - output_twiddled_im,
            };
            *fft_input_rev = Complex {
                re: sum.re + output_twiddled_real,
                im: -output_twiddled_im - diff.im,
            }
        }

        // If the output len is odd, the loop above can't preprocess the centermost element, so handle that separately
        if input.len() % 2 == 1 {
            let center_element = input[input.len() / 2];
            let doubled = center_element + center_element;
            input[input.len() / 2] = doubled.conj();
        }

        // FFT and store result in buffer_out
        let buf_out = unsafe {
            let ptr = output.as_mut_ptr() as *mut Complex<T>;
            let len = output.len();
            std::slice::from_raw_parts_mut(ptr, len / 2)
        };
        self.fft
            .process_outofplace_with_scratch(&mut input[..output.len() / 2], buf_out, scratch);
        if first_invalid || last_invalid {
            return Err(FftError::InputValues(first_invalid, last_invalid));
        }
        Ok(())
    }

    fn get_scratch_len(&self) -> usize {
        self.scratch_len
    }

    fn len(&self) -> usize {
        self.length
    }

    fn make_input_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.complex_len()]
    }

    fn make_output_vec(&self) -> Vec<T> {
        vec![T::zero(); self.len()]
    }

    fn make_scratch_vec(&self) -> Vec<Complex<T>> {
        vec![Complex::zero(); self.get_scratch_len()]
    }
}

#[cfg(test)]
mod tests {
    use crate::FftError;
    use crate::RealFftPlanner;
    use rand::Rng;
    use rustfft::num_complex::Complex;
    use rustfft::num_traits::{Float, Zero};
    use rustfft::FftPlanner;
    use std::error::Error;
    use std::ops::Sub;

    // get the largest difference
    fn compare_complex<T: Float + Sub>(a: &[Complex<T>], b: &[Complex<T>]) -> T {
        a.iter()
            .zip(b.iter())
            .fold(T::zero(), |maxdiff, (val_a, val_b)| {
                let diff = (val_a - val_b).norm();
                if maxdiff > diff {
                    maxdiff
                } else {
                    diff
                }
            })
    }

    // get the largest difference
    fn compare_scalars<T: Float + Sub>(a: &[T], b: &[T]) -> T {
        a.iter()
            .zip(b.iter())
            .fold(T::zero(), |maxdiff, (val_a, val_b)| {
                let diff = (*val_a - *val_b).abs();
                if maxdiff > diff {
                    maxdiff
                } else {
                    diff
                }
            })
    }

    // Compare ComplexToReal with standard inverse FFT
    #[test]
    fn complex_to_real_64() {
        for length in 1..1000 {
            let mut real_planner = RealFftPlanner::<f64>::new();
            let c2r = real_planner.plan_fft_inverse(length);
            let mut out_a = c2r.make_output_vec();
            let mut indata = c2r.make_input_vec();
            let mut rustfft_check: Vec<Complex<f64>> = vec![Complex::zero(); length];
            let mut rng = rand::thread_rng();
            for val in indata.iter_mut() {
                *val = Complex::new(rng.gen::<f64>(), rng.gen::<f64>());
            }
            indata[0].im = 0.0;
            if length % 2 == 0 {
                indata[length / 2].im = 0.0;
            }
            for (val_long, val) in rustfft_check
                .iter_mut()
                .take(c2r.complex_len())
                .zip(indata.iter())
            {
                *val_long = *val;
            }
            for (val_long, val) in rustfft_check
                .iter_mut()
                .rev()
                .take(length / 2)
                .zip(indata.iter().skip(1))
            {
                *val_long = val.conj();
            }
            let mut fft_planner = FftPlanner::<f64>::new();
            let fft = fft_planner.plan_fft_inverse(length);

            c2r.process(&mut indata, &mut out_a).unwrap();
            fft.process(&mut rustfft_check);

            let check_real = rustfft_check.iter().map(|val| val.re).collect::<Vec<f64>>();
            let maxdiff = compare_scalars(&out_a, &check_real);
            assert!(
                maxdiff < 1.0e-9,
                "Length: {}, too large error: {}",
                length,
                maxdiff
            );
        }
    }

    // Compare ComplexToReal with standard inverse FFT
    #[test]
    fn complex_to_real_32() {
        for length in 1..1000 {
            let mut real_planner = RealFftPlanner::<f32>::new();
            let c2r = real_planner.plan_fft_inverse(length);
            let mut out_a = c2r.make_output_vec();
            let mut indata = c2r.make_input_vec();
            let mut rustfft_check: Vec<Complex<f32>> = vec![Complex::zero(); length];
            let mut rng = rand::thread_rng();
            for val in indata.iter_mut() {
                *val = Complex::new(rng.gen::<f32>(), rng.gen::<f32>());
            }
            indata[0].im = 0.0;
            if length % 2 == 0 {
                indata[length / 2].im = 0.0;
            }
            for (val_long, val) in rustfft_check
                .iter_mut()
                .take(c2r.complex_len())
                .zip(indata.iter())
            {
                *val_long = *val;
            }
            for (val_long, val) in rustfft_check
                .iter_mut()
                .rev()
                .take(length / 2)
                .zip(indata.iter().skip(1))
            {
                *val_long = val.conj();
            }
            let mut fft_planner = FftPlanner::<f32>::new();
            let fft = fft_planner.plan_fft_inverse(length);

            c2r.process(&mut indata, &mut out_a).unwrap();
            fft.process(&mut rustfft_check);

            let check_real = rustfft_check.iter().map(|val| val.re).collect::<Vec<f32>>();
            let maxdiff = compare_scalars(&out_a, &check_real);
            assert!(
                maxdiff < 5.0e-4,
                "Length: {}, too large error: {}",
                length,
                maxdiff
            );
        }
    }

    // Test that ComplexToReal returns the right errors
    #[test]
    fn complex_to_real_errors_even() {
        let length = 100;
        let mut real_planner = RealFftPlanner::<f64>::new();
        let c2r = real_planner.plan_fft_inverse(length);
        let mut out_a = c2r.make_output_vec();
        let mut indata = c2r.make_input_vec();
        let mut rng = rand::thread_rng();

        // Make some valid data
        for val in indata.iter_mut() {
            *val = Complex::new(rng.gen::<f64>(), rng.gen::<f64>());
        }
        indata[0].im = 0.0;
        indata[50].im = 0.0;
        // this should be ok
        assert!(c2r.process(&mut indata, &mut out_a).is_ok());

        // Make some invalid data, first point invalid
        for val in indata.iter_mut() {
            *val = Complex::new(rng.gen::<f64>(), rng.gen::<f64>());
        }
        indata[50].im = 0.0;
        let res = c2r.process(&mut indata, &mut out_a);
        assert!(res.is_err());
        assert!(matches!(res, Err(FftError::InputValues(true, false))));

        // Make some invalid data, last point invalid
        for val in indata.iter_mut() {
            *val = Complex::new(rng.gen::<f64>(), rng.gen::<f64>());
        }
        indata[0].im = 0.0;
        let res = c2r.process(&mut indata, &mut out_a);
        assert!(res.is_err());
        assert!(matches!(res, Err(FftError::InputValues(false, true))));
    }

    // Test that ComplexToReal returns the right errors
    #[test]
    fn complex_to_real_errors_odd() {
        let length = 101;
        let mut real_planner = RealFftPlanner::<f64>::new();
        let c2r = real_planner.plan_fft_inverse(length);
        let mut out_a = c2r.make_output_vec();
        let mut indata = c2r.make_input_vec();
        let mut rng = rand::thread_rng();

        // Make some valid data
        for val in indata.iter_mut() {
            *val = Complex::new(rng.gen::<f64>(), rng.gen::<f64>());
        }
        indata[0].im = 0.0;
        // this should be ok
        assert!(c2r.process(&mut indata, &mut out_a).is_ok());

        // Make some invalid data, first point invalid
        for val in indata.iter_mut() {
            *val = Complex::new(rng.gen::<f64>(), rng.gen::<f64>());
        }
        let res = c2r.process(&mut indata, &mut out_a);
        assert!(res.is_err());
        assert!(matches!(res, Err(FftError::InputValues(true, false))));
    }

    // Compare RealToComplex with standard FFT
    #[test]
    fn real_to_complex_64() {
        for length in 1..1000 {
            let mut real_planner = RealFftPlanner::<f64>::new();
            let r2c = real_planner.plan_fft_forward(length);
            let mut out_a = r2c.make_output_vec();
            let mut indata = r2c.make_input_vec();
            let mut rng = rand::thread_rng();
            for val in indata.iter_mut() {
                *val = rng.gen::<f64>();
            }
            let mut rustfft_check = indata
                .iter()
                .map(Complex::from)
                .collect::<Vec<Complex<f64>>>();
            let mut fft_planner = FftPlanner::<f64>::new();
            let fft = fft_planner.plan_fft_forward(length);
            fft.process(&mut rustfft_check);
            r2c.process(&mut indata, &mut out_a).unwrap();
            assert_eq!(out_a[0].im, 0.0, "First imaginary component must be zero");
            if length % 2 == 0 {
                assert_eq!(
                    out_a.last().unwrap().im,
                    0.0,
                    "Last imaginary component for even lengths must be zero"
                );
            }
            let maxdiff = compare_complex(&out_a, &rustfft_check[0..r2c.complex_len()]);
            assert!(
                maxdiff < 1.0e-9,
                "Length: {}, too large error: {}",
                length,
                maxdiff
            );
        }
    }

    // Compare RealToComplex with standard FFT
    #[test]
    fn real_to_complex_32() {
        for length in 1..1000 {
            let mut real_planner = RealFftPlanner::<f32>::new();
            let r2c = real_planner.plan_fft_forward(length);
            let mut out_a = r2c.make_output_vec();
            let mut indata = r2c.make_input_vec();
            let mut rng = rand::thread_rng();
            for val in indata.iter_mut() {
                *val = rng.gen::<f32>();
            }
            let mut rustfft_check = indata
                .iter()
                .map(Complex::from)
                .collect::<Vec<Complex<f32>>>();
            let mut fft_planner = FftPlanner::<f32>::new();
            let fft = fft_planner.plan_fft_forward(length);
            fft.process(&mut rustfft_check);
            r2c.process(&mut indata, &mut out_a).unwrap();
            assert_eq!(out_a[0].im, 0.0, "First imaginary component must be zero");
            if length % 2 == 0 {
                assert_eq!(
                    out_a.last().unwrap().im,
                    0.0,
                    "Last imaginary component for even lengths must be zero"
                );
            }
            let maxdiff = compare_complex(&out_a, &rustfft_check[0..r2c.complex_len()]);
            assert!(
                maxdiff < 5.0e-4,
                "Length: {}, too large error: {}",
                length,
                maxdiff
            );
        }
    }

    // Check that the ? operator works on the custom errors. No need to run, just needs to compile.
    #[allow(dead_code)]
    fn test_error() -> Result<(), Box<dyn Error>> {
        let mut real_planner = RealFftPlanner::<f64>::new();
        let r2c = real_planner.plan_fft_forward(100);
        let mut out_a = r2c.make_output_vec();
        let mut indata = r2c.make_input_vec();
        r2c.process(&mut indata, &mut out_a)?;
        Ok(())
    }
}