1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
use fixed::{traits::LossyInto as _, FixedI128};

use crate::TimeInt;

/// Either nanoseconds or sequence numbers.
///
/// Must be matched with a [`crate::TimeType`] to know what.
///
/// Used both for time points and durations.
///
/// This is like [`TimeInt`] with added precision to be able to represent
/// time between sequences (and even between nanoseconds).
/// This is needed in the time panel to refer to time between sequence numbers,
/// e.g. for panning.
///
/// We use 64+64 bit fixed point representation in order to support
/// large numbers (nanos since unix epoch) with sub-integer precision.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct TimeReal(FixedI128<typenum::U64>);

impl TimeReal {
    pub const MIN: Self = Self(FixedI128::MIN);
    pub const MAX: Self = Self(FixedI128::MAX);

    #[inline]
    pub fn floor(&self) -> TimeInt {
        let int: i64 = self.0.saturating_floor().lossy_into();
        TimeInt::from(int)
    }

    #[inline]
    pub fn round(&self) -> TimeInt {
        let int: i64 = self.0.saturating_round().lossy_into();
        TimeInt::from(int)
    }

    #[inline]
    pub fn ceil(&self) -> TimeInt {
        let int: i64 = self.0.saturating_ceil().lossy_into();
        TimeInt::from(int)
    }

    #[inline]
    pub fn as_f32(&self) -> f32 {
        self.0.lossy_into()
    }

    #[inline]
    pub fn as_f64(self) -> f64 {
        self.0.lossy_into()
    }

    #[inline]
    pub fn abs(self) -> Self {
        Self(self.0.saturating_abs())
    }
}

// ---------------

impl From<i64> for TimeReal {
    #[inline]
    fn from(integer: i64) -> Self {
        Self(integer.into())
    }
}

impl From<f32> for TimeReal {
    /// Saturating cast
    #[inline]
    fn from(value: f32) -> Self {
        debug_assert!(!value.is_nan());
        if value.is_nan() {
            re_log::warn_once!("NaN time detected");
            Self(0.into())
        } else if let Some(num) = FixedI128::checked_from_num(value) {
            Self(num)
        } else if value < 0.0 {
            Self::MIN
        } else {
            Self::MAX
        }
    }
}

impl From<f64> for TimeReal {
    /// Saturating cast
    #[inline]
    fn from(value: f64) -> Self {
        debug_assert!(!value.is_nan());
        if value.is_nan() {
            re_log::warn_once!("NaN time detected");
            Self(0.into())
        } else if let Some(num) = FixedI128::checked_from_num(value) {
            Self(num)
        } else if value < 0.0 {
            Self::MIN
        } else {
            Self::MAX
        }
    }
}

impl From<TimeInt> for TimeReal {
    #[inline]
    fn from(time_int: TimeInt) -> Self {
        Self::from(time_int.as_i64())
    }
}

impl From<crate::Duration> for TimeReal {
    #[inline]
    fn from(duration: crate::Duration) -> Self {
        Self::from(duration.as_nanos())
    }
}

impl From<crate::Time> for TimeReal {
    #[inline]
    fn from(time: crate::Time) -> Self {
        Self::from(time.nanos_since_epoch())
    }
}

impl From<TimeReal> for crate::Time {
    #[inline]
    fn from(int: TimeReal) -> Self {
        Self::from_ns_since_epoch(int.round().as_i64())
    }
}

impl From<TimeReal> for crate::Duration {
    #[inline]
    fn from(int: TimeReal) -> Self {
        Self::from_nanos(int.round().as_i64())
    }
}

// ---------------

impl std::ops::Neg for TimeReal {
    type Output = Self;

    #[inline]
    fn neg(self) -> Self::Output {
        Self(self.0.saturating_neg())
    }
}

impl std::ops::Add for TimeReal {
    type Output = Self;

    #[inline]
    fn add(self, rhs: Self) -> Self::Output {
        Self(self.0.saturating_add(rhs.0))
    }
}

impl std::ops::Sub for TimeReal {
    type Output = Self;

    #[inline]
    fn sub(self, rhs: Self) -> Self::Output {
        Self(self.0.saturating_sub(rhs.0))
    }
}

impl std::ops::Mul<f64> for TimeReal {
    type Output = Self;

    #[inline]
    fn mul(self, rhs: f64) -> Self::Output {
        Self(self.0.saturating_mul(Self::from(rhs).0))
    }
}

impl std::ops::AddAssign for TimeReal {
    #[inline]
    fn add_assign(&mut self, rhs: Self) {
        self.0 = self.0.saturating_add(rhs.0);
    }
}

impl std::ops::SubAssign for TimeReal {
    #[inline]
    fn sub_assign(&mut self, rhs: Self) {
        self.0 = self.0.saturating_sub(rhs.0);
    }
}

impl std::iter::Sum for TimeReal {
    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
        let mut sum = TimeReal::from(0);
        for item in iter {
            sum += item;
        }
        sum
    }
}

// ---------------

impl std::ops::Add<TimeInt> for TimeReal {
    type Output = TimeReal;

    #[inline]
    fn add(self, rhs: TimeInt) -> Self::Output {
        self + TimeReal::from(rhs)
    }
}

impl std::ops::Sub<TimeInt> for TimeReal {
    type Output = TimeReal;

    #[inline]
    fn sub(self, rhs: TimeInt) -> Self::Output {
        self - TimeReal::from(rhs)
    }
}

impl std::ops::Add<TimeReal> for TimeInt {
    type Output = TimeReal;

    #[inline]
    fn add(self, rhs: TimeReal) -> Self::Output {
        TimeReal::from(self) + rhs
    }
}

impl std::ops::Sub<TimeReal> for TimeInt {
    type Output = TimeReal;

    #[inline]
    fn sub(self, rhs: TimeReal) -> Self::Output {
        TimeReal::from(self) - rhs
    }
}

// ---------------

impl PartialEq<TimeInt> for TimeReal {
    #[inline]
    fn eq(&self, other: &TimeInt) -> bool {
        self.0 == other.as_i64()
    }
}

impl PartialEq<TimeReal> for TimeInt {
    #[inline]
    fn eq(&self, other: &TimeReal) -> bool {
        self.as_i64() == other.0
    }
}

impl PartialOrd<TimeInt> for TimeReal {
    #[inline]
    fn partial_cmp(&self, other: &TimeInt) -> Option<std::cmp::Ordering> {
        self.0.partial_cmp(&other.as_i64())
    }
}

impl PartialOrd<TimeReal> for TimeInt {
    #[inline]
    fn partial_cmp(&self, other: &TimeReal) -> Option<std::cmp::Ordering> {
        self.as_i64().partial_cmp(&other.0)
    }
}

// ---------------

#[test]
fn test_time_value_f() {
    type T = TimeReal;

    let nice_floats = [-1.75, -0.25, 0.0, 0.25, 1.0, 1.75];
    for &f in &nice_floats {
        assert_eq!(T::from(f).as_f64(), f);
        assert_eq!(-T::from(f), T::from(-f));
        assert_eq!(T::from(f).abs(), T::from(f.abs()));

        for &g in &nice_floats {
            assert_eq!(T::from(f) + T::from(g), T::from(f + g));
            assert_eq!(T::from(f) - T::from(g), T::from(f - g));
        }
    }

    assert_eq!(TimeReal::from(f32::NEG_INFINITY), TimeReal::MIN);
    assert_eq!(TimeReal::from(f32::MIN), TimeReal::MIN);
    assert_eq!(TimeReal::from(f32::INFINITY), TimeReal::MAX);
    assert_eq!(TimeReal::from(f32::MAX), TimeReal::MAX);
}