1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
use std::cell::{Cell, UnsafeCell};
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, AtomicUsize, AtomicPtr, Ordering};
use std::ptr::null_mut;

/// A thread-safe reference counted pointer that allows interior mutability
///
/// The [ArcRcu] is functionally roughly equivalent to
/// `Arc<RwLock<T>>`, except that reads (of the old value) may happen
/// while a write is taking place.  Reads on an [ArcRcu] are much
/// faster (by a factor of 2 or 3) than reads on either a
/// `Arc<RwLock<T>>` or a `Arc<Mutex<T>>`.  So in this case you gain
/// both ergonomics and read speed.  Writes are slow, so only use this
/// type if writes are rare (or their speed doesn't matter).

/// ```
/// let x = rcu_clean::ArcRcu::new(3);
/// let y: &usize = &(*x);
/// let z = x.clone();
/// *x.update() = 7; // Wow, we are mutating something we have borrowed!
/// assert_eq!(*y, 3); // the old reference is still valid.
/// assert_eq!(*x, 7); // but the pointer now points to the new value.
/// assert_eq!(*z, 7); // but the cloned pointer also points to the new value.
/// ```
pub struct ArcRcu<T> {
    inner: Arc<Inner<T>>,
    have_borrowed: Cell<bool>,
}
unsafe impl<T: Send + Sync> Send for ArcRcu<T> {}
unsafe impl<T: Send + Sync> Sync for ArcRcu<T> {}
impl<T: Clone> Clone for ArcRcu<T> {
    fn clone(&self) -> Self {
        ArcRcu {
            inner: self.inner.clone(),
            have_borrowed: Cell::new(false),
        }
    }
}
pub struct Inner<T> {
    borrow_count: AtomicUsize,
    am_writing: AtomicBool,
    list: List<T>
}
pub struct List<T> {
    value: UnsafeCell<T>,
    next: AtomicPtr<List<T>>,
}

impl<T> std::ops::Deref for ArcRcu<T> {
    type Target = T;
    fn deref(&self) -> &T {
        let aleady_borrowed = self.have_borrowed.get();
        if !aleady_borrowed {
            self.inner.borrow_count.fetch_add(1, Ordering::Relaxed);
            self.have_borrowed.set(true); // indicate we have borrowed this once.
        }
        let next = self.inner.list.next.load(Ordering::Acquire);
        if next == null_mut() {
            unsafe { &* self.inner.list.value.get() }
        } else {
            unsafe { &* (*next).value.get() }
        }
    }
}
impl<T> std::borrow::Borrow<T> for ArcRcu<T> {
    fn borrow(&self) -> &T {
        &*self
    }
}
impl<T> Drop for List<T> {
    fn drop(&mut self) {
        let next = self.next.load(Ordering::Acquire);
        if next != null_mut() {
            unsafe { Box::from_raw(next); }
        }
    }
}
impl<'a,T: Clone> ArcRcu<T> {
    pub fn new(x: T) -> Self {
        ArcRcu {
            have_borrowed: Cell::new(false),
            inner: Arc::new(Inner {
                borrow_count: AtomicUsize::new(0),
                am_writing: AtomicBool::new(false),
                list: List {
                    value: UnsafeCell::new(x),
                    next: AtomicPtr::new(null_mut()),
                },
            }),
        }
    }
    pub fn update(&'a self) -> Guard<'a, T> {
        if self.inner.am_writing.swap(true, Ordering::Relaxed) {
            panic!("Cannont update an ArcRcu twice simultaneously.");
        }
        Guard {
            list: Some(List {
                value: UnsafeCell::new((*(*self)).clone()),
                next: AtomicPtr::new(self.inner.list.next.load(Ordering::Acquire)),
            }),
            rc_guts: &self.inner,
        }
    }
    pub fn clean(&mut self) {
        let aleady_borrowed = self.have_borrowed.get();
        if aleady_borrowed {
            self.inner.borrow_count.fetch_sub(1, Ordering::Relaxed);
            self.have_borrowed.set(false); // indicate we have no longer borrowed this.
        }
        let borrow_count = self.inner.borrow_count.load(Ordering::Relaxed);
        let next = self.inner.list.next.load(Ordering::Acquire);
        if borrow_count == 0 && next != null_mut() {
            unsafe {
                // make a copy of the old datum that we will need to free
                let buffer: UnsafeCell<Option<T>> = UnsafeCell::new(None);
                std::ptr::copy_nonoverlapping(self.inner.list.value.get(),
                                              buffer.get() as *mut T, 1);
                // now copy the "good" value to the main spot
                std::ptr::copy_nonoverlapping((*next).value.get(),
                                              self.inner.list.value.get(), 1);
                // Now we can set the pointer to null which activates
                // the copy we just made.
                let _to_be_freed = Box::from_raw(self.inner.list.next.swap(null_mut(), Ordering::Release));
                std::ptr::copy_nonoverlapping(buffer.get() as *mut T,
                                              (*next).value.get(), 1);
                let buffer_copy: UnsafeCell<Option<T>> = UnsafeCell::new(None);
                std::ptr::copy_nonoverlapping(buffer_copy.get(), buffer.get(), 1);
            }
        }
    }
}

pub struct Guard<'a,T: Clone> {
    list: Option<List<T>>,
    rc_guts: &'a Inner<T>,
}
impl<'a,T: Clone> std::ops::Deref for Guard<'a,T> {
    type Target = T;
    fn deref(&self) -> &T {
        if let Some(ref list) = self.list {
            unsafe { & *list.value.get() }
        } else {
            unreachable!()
        }
    }
}
impl<'a,T: Clone> std::ops::DerefMut for Guard<'a,T> {
    fn deref_mut(&mut self) -> &mut T {
        if let Some(ref list) = self.list {
            unsafe { &mut *list.value.get() }
        } else {
            unreachable!()
        }
    }
}
impl<'a,T: Clone> Drop for Guard<'a,T> {
    fn drop(&mut self) {
        let list = std::mem::replace(&mut self.list, None);
        self.rc_guts.list.next.store(Box::into_raw(Box::new(list.unwrap())),
                                     Ordering::Release);
        self.rc_guts.am_writing.store(false, Ordering::Relaxed);
    }
}