1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
mod node;
#[cfg(feature = "map")]
pub mod rbmap;
#[cfg(feature = "set")]
pub mod rbtree;
#[macro_use]
#[cfg(feature = "queue")]
pub mod rbqueue;
mod helpers;
#[cfg(feature = "map")]
mod mapper;
#[cfg(test)]
mod rbtree_tests;
#[cfg(test)]
mod stress_test;

#[cfg(feature = "map")]
use mapper::Mapper;
use node::Node;

/// A map implemented using a red black tree to
/// store key-value pairs.
#[cfg(feature = "map")]
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone)]
pub struct RBMap<K: PartialOrd, V> {
    map: RBTree<Mapper<K, V>>,
}

/// A red black tree that can be used to store
/// elements sorted by their PartialOrd provided
/// ordering.
#[cfg(feature = "set")]
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone)]
pub struct RBTree<T: PartialOrd> {
    root: Node<T>,
    contained: usize,
}

/// A priority queue implemented using a red black
/// tree. The ordering supplied must satisfy the assymetry
/// and transitivity rules as outlined by  the dorumentation
/// of std::cmp::PartialOrd.
#[cfg(feature = "queue")]
#[allow(clippy::upper_case_acronyms)]
#[derive(Clone)]
pub struct RBQueue<T, P>
where
    P: Fn(&T, &T) -> std::cmp::Ordering,
{
    root: Node<T>,
    contained: usize,
    cmp: P,
}

/// Returns an RBTree containing the items
/// given separated by commas.
/// # Example:
/// ```
/// use rb_tree::{RBTree, new_set};
///
/// let t1 = new_set!('b', 'a', 'd', 'c');
/// let t2 = new_set!('d', 'f', 'e', 'c');
///
/// let mut in_both = t1.intersection(&t2);
/// assert_eq!(in_both.next().unwrap(), &'c');
/// assert_eq!(in_both.next().unwrap(), &'d');
/// assert_eq!(in_both.next(), None);
/// ```
#[cfg(feature = "set")]
#[macro_export]
macro_rules! new_set {
    ( $($v:expr),* ) => {{
        let mut t = RBTree::new();
        $(
            t.insert($v);
        )*
        t
    }};
}

/// Returns an RBQueue that prioritises on given
/// closure and contains the comma-separated
/// elements following it.
/// # Example:
/// use rb_tree::{RBQueue, new_queue};
///
/// let mut q = new_queue!(|l, r| {
/// match l - r {
///     i32::MIN..=-1_i32 => Greater,
///     0 => Equal,
///     1_i32..=i32::MAX => Less
/// }
/// }; 1, 2, 3, 4);
/// assert_eq!(q.pop().unwrap(), 4);
/// assert_eq!(q.pop().unwrap(), 3);
/// assert_eq!(q.pop().unwrap(), 2);
/// assert_eq!(q.pop().unwrap(), 1);
/// assert_eq!(q.pop(), None);
/// ```
#[cfg(feature = "queue")]
#[macro_export]
macro_rules! new_queue {
    ($comp:expr; $($v:expr),*) => {{
        let mut q = RBQueue::new($comp);
        $(q.insert($v);)*
        q
    }};
}

/// Allows the creation of a queue using C-like
/// comparison values. That is to say, `cmp`
/// should return a value less than, equal to,
/// or greater than 0 when `l` should be placed
/// before, is equal to, or be placed after `r`
/// respectively.
///
/// `cmp` should be a function that takes two values
/// from the queue and returns an integer (i8)
/// providing the information as above.
///
/// # Example:
/// ```
/// # #[macro_use(new_c_queue)]
/// # extern crate rb_tree;
/// # use rb_tree::RBQueue;
/// # fn main() {
/// let mut q = new_c_queue!(|l: &i64, r| (r - l));
/// q.insert(1);
/// q.insert(2);
/// q.insert(3);
/// assert_eq!(q.ordered(), [&3, &2, &1]);
/// # }
/// ```
///
/// # Example:
/// ```
/// # #[macro_use(new_c_queue)]
/// # extern crate rb_tree;
/// # use rb_tree::RBQueue;
/// # fn main() {
/// let q = new_c_queue!(|l: &i64, r| (r - l); 1, 2, 3);
/// assert_eq!(q.ordered(), [&3, &2, &1]);
/// # }
/// ```
#[cfg(feature = "queue")]
#[macro_export]
macro_rules! new_c_queue {
    ($cmp:expr) => {
        RBQueue::new(move |l, r| {
            let comp = Box::new($cmp);
            match comp(l, r) as i8 {
                -128i8 ..= -1 => std::cmp::Ordering::Less,
                0 => std::cmp::Ordering::Equal,
                1 ..= 127i8 => std::cmp::Ordering::Greater
            }
        })
    };

    ($cmp:expr; $($v:expr),*) => {{
        let mut q = RBQueue::new(move |l, r| {
            let comp = Box::new($cmp);
            match comp(l, r) as i8 {
                -128i8 ..= -1 => std::cmp::Ordering::Less,
                0 => std::cmp::Ordering::Equal,
                1 ..= 127i8 => std::cmp::Ordering::Greater
            }
        });
        $(
            q.insert($v);
        )*
        q
    }};
}

/// Returns an RBMap containing the (key, value)
/// pairs separated by commas.
/// # Example:
/// ```
/// use rb_tree::{RBMap, new_map};
///
/// let m = new_map!((1, 'a'), (2, 'b'), (3, 'c'));
/// assert_eq!(m.get(&1).unwrap(), &'a');
/// assert_eq!(m.get(&2).unwrap(), &'b');
/// assert_eq!(m.get(&3).unwrap(), &'c');
/// ```
#[cfg(feature = "map")]
#[macro_export]
macro_rules! new_map {
    ( $(($k:expr, $v:expr)),* ) => {{
        let mut m = RBMap::new();
        $(
            m.insert($k, $v);
        )*
        m
    }};
}