1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
//! Limit the concurrency of an individual rayon parallel iterator method with a convenient macro.
//!
//! # Example
//! This example demonstrates applying a concurrency-limited `map` to an iterator with the [`iter_concurrent_limit`] macro.
//! `map` is one of many supported methods of the macro.
//! ```rust
//! use rayon::iter::{IntoParallelIterator, ParallelIterator};
//! use rayon_iter_concurrent_limit::iter_concurrent_limit;
//! const N: usize = 1000;
//! let op = |i: usize| -> usize {
//!     let alloc = vec![i; N]; // max 2 concurrent allocations in this example
//!     alloc.into_par_iter().sum::<usize>() // runs on all threads
//! };
//! let sum_iter = iter_concurrent_limit!(2, (0..100), map, op);
//! let output = sum_iter
//!     .map(|alloc_sum| -> usize {
//!         alloc_sum / N // runs on all threads
//!     })
//!     .collect::<Vec<usize>>();
//! assert_eq!(output, (0..100).into_iter().collect::<Vec<usize>>());
//! ```
//! The equivalent `sum_iter` expression using [`iter_subdivide`] is:
//! ```rust
//! # use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator};
//! # use rayon_iter_concurrent_limit::iter_subdivide;
//! # const N: usize = 1000;
//! # let op = |i: usize| -> usize {
//! #     let alloc = vec![i; N]; // max 2 concurrent allocations in this example
//! #     alloc.into_par_iter().sum::<usize>() // runs on all threads
//! # };
//! let sum_iter = iter_subdivide(2, (0..100).into_par_iter())
//!     .flat_map_iter(|chunk| chunk.into_iter().map(op));
//! # let output = sum_iter
//! #     .map(|alloc_sum| -> usize {
//! #         alloc_sum / N // runs on all threads
//! #     })
//! #     .collect::<Vec<usize>>();
//! # assert_eq!(output, (0..100).into_iter().collect::<Vec<usize>>());
//! ```
//! The equivalent expression without using functionality in this crate is:
//! ```rust
//! # use rayon::iter::{IndexedParallelIterator, IntoParallelIterator, ParallelIterator};
//! # const N: usize = 1000;
//! # let op = |i: usize| -> usize {
//! #     let alloc = vec![i; N]; // max 2 concurrent allocations in this example
//! #     alloc.into_par_iter().sum::<usize>() // runs on all threads
//! # };
//! let sum_iter = (0..100)
//!     .into_par_iter()
//!     .chunks((100 + 2 - 1) / 2)
//!     .flat_map_iter(|chunk| chunk.into_iter().map(op));
//! # let output = sum_iter
//! #     .map(|alloc_sum| -> usize {
//! #         alloc_sum / N // runs on all threads
//! #     })
//! #     .collect::<Vec<usize>>();
//! # assert_eq!(output, (0..100).into_iter().collect::<Vec<usize>>());
//! ```
//!
//! # Motivation
//! Consider this example:
//! ```rust
//! use rayon::iter::{IntoParallelIterator, ParallelIterator};
//! let op = |_: usize| {
//!     // operation involving a large allocation
//! };
//! (0..100).into_par_iter().for_each(op);
//! ```
//! In this case, it may be necessary to limit the number of concurrent executions of `op` due to memory constraints.
//! The number of threads could be limited with [`rayon::ThreadPool::install`](rayon::ThreadPool::install) like so:
//! ```rust
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # use rayon::iter::{IntoParallelIterator, ParallelIterator};
//! # let op = |_: usize| {};
//! let thread_pool = rayon::ThreadPoolBuilder::new().num_threads(1).build()?;
//! thread_pool.install(|| {
//!     (0..100).into_par_iter().for_each(op);
//! });
//! # Ok(())
//! # }
//! ```
//!
//! However, this has some limitations and footguns:
//! - Any parallel operations within `op` will use the same thread-limited thread pool, unless [`install`](rayon::ThreadPool::install) is called internally with a different thread pool.
//! - If [`install`](rayon::ThreadPool::install) is called internally, `op` can yield and multiple instances of `op` may run concurrently on a thread. This is detailed [here](https://docs.rs/rayon/1.8.1/rayon/struct.ThreadPool.html#warning-execution-order) in the [`install`](rayon::ThreadPool::install) documentation.
//! - An iterator must be consumed in the [`install`](rayon::ThreadPool::install) scope of a [`ThreadPool`](rayon::ThreadPool), otherwise it will not use that thread pool.
//!
//! # Solution
//! This crate provides [`iter_concurrent_limit`], a macro that enables many [`rayon::iter::ParallelIterator`] methods to execute their operands with limited concurrency.
//!
//! The [Examples](crate::iter_concurrent_limit#examples) section of [`iter_concurrent_limit`] has usage examples for each method supported by the macro.
//!
//! ### Implementation
//! The macro limits concurrency by calling [`IndexedParallelIterator::chunks`] on the parallel iterator (using the [`iter_subdivide`] method) to reduce the number of work items for [`rayon`].
//! Internally, the [`iter_subdivide`] method calculates the chunk size as `iterator.len().ceiling_div(concurrent_limit)`.
//! The function passed to the macro is called sequentially on the items in each chunk, but in parallel over the chunks.
//! The output of the function is flattened for methods with an iterator output, like `map` and `filter`.
//!
//! ### Limitations
//! - Iterators passed to [`iter_concurrent_limit`] or [`iter_subdivide`] must implement [`std::iter::IntoIterator`] and [`rayon::iter::IntoParallelIterator`], and the created parallel iterator must implement [`rayon::iter::IndexedParallelIterator`].
//! - Only a subset of relevant [`ParallelIterator`](rayon::iter::ParallelIterator)/[`IndexedParallelIterator`] methods are currently supported by the [`iter_concurrent_limit`] macro.
// TODO: - Methods which rely on thread-local initialisation (e.g. [`rayon::iter::ParallelIterator::map_init`]) will not function identically when run though [`iter_concurrent_limit`].
//! - If the operator/predicate passed to [`iter_concurrent_limit`] is a closure, its signature might have to be made explicit

#![warn(unused_variables)]
#![warn(dead_code)]
#![deny(missing_docs)]

use rayon::iter::{Chunks, IndexedParallelIterator};

/// Subdivide a [`rayon::iter::IndexedParallelIterator`] into `num_chunks` chunks.
///
/// This returns the output of the [`IndexedParallelIterator::chunks`] function with a chunk size calculated according to:
/// ```rust
/// # use rayon::iter::IntoParallelIterator;
/// # use rayon::iter::IndexedParallelIterator;
/// # let num_chunks: usize = 1;
/// # let iterator = (0..1).into_par_iter();
/// (iterator.len() + num_chunks - 1) / num_chunks
/// # ;
/// ```
/// If `num_chunks` is zero, then there will be one chunk per iterator item.
///
/// If `num_chunks` does not evenly divide the iterator length, the last chunk will be smaller than the rest.
///
/// This method is used internally by the [`iter_concurrent_limit`] macro.
pub fn iter_subdivide<I: IndexedParallelIterator>(num_chunks: usize, iterator: I) -> Chunks<I> {
    if num_chunks == 0 {
        iterator.chunks(1)
    } else {
        let chunk_size = std::cmp::max((iterator.len() + num_chunks - 1) / num_chunks, 1);
        iterator.chunks(chunk_size)
    }
}

// TODO: Support more methods
/// Apply a method on a [`rayon::iter::IndexedParallelIterator`] with a limit on the number of concurrent executions of the function passed to the method.
///
/// Concurrent executions are limited by chunking the iterator to reduce the number of work items.
/// The [crate root documentation](crate) explains the motivation for this approach, provides further details on the underlying implementation of the macro, and details its limitations.
///
/// # Arguments
/// The macro arguments are `(concurrent_limit, iterator, method, function)`:
/// - `concurrent_limit` is a [`usize`] specifying the maximum concurrent executions of `function`.
///   - A `concurrent_limit` of zero means no concurrent limit. Some methods will skip internal chunking in this case.
/// - `iterator` implements [`std::iter::IntoIterator`] and [`rayon::iter::IntoParallelIterator`]
///   - The parallel iterator must implement [`rayon::iter::IndexedParallelIterator`].
/// - `method` is the name of a supported iterator method:
///   - Only methods which call a supplied function are supported.
///   - Operations without a function (e.g. min, max) will not allocate and there is little benefit in setting a concurrent limit for such methods.
///   - Not every iterator method matching this criteria is currently supported.
/// - `function` is a function compatible with `method`, such as an operation, predicate, etc.
///   - The function is called *sequentially* on the items in each chunk, but in *parallel* over the chunks, with the number of concurrent executions upper bounded by the `concurrent_limit`.
///   - Parallel rayon methods executed in the function will implicitly utilise the global thread pool unless an alternative thread pool has been installed (see [`rayon::ThreadPool`]).
///
/// # Examples
/// ### for_each
/// ```rust
/// # use rayon::iter::{IntoParallelIterator, ParallelIterator};
/// # use rayon_iter_concurrent_limit::iter_concurrent_limit;
/// let op = |i: usize| {
///     let alloc = vec![i; 1000]; // limited concurrency
///     alloc.into_par_iter().for_each(|_j| {}); // runs on all threads
/// };
/// iter_concurrent_limit!(2, (0..10), for_each, op);
/// ```
///
/// ### try_for_each
/// ```rust
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # use rayon::iter::{IntoParallelIterator, ParallelIterator};
/// # use rayon_iter_concurrent_limit::iter_concurrent_limit;
/// let op = |i: usize| {
///     let alloc = vec![i; 1000]; // limited concurrency
///     alloc.into_par_iter().for_each(|_j| {}); // runs on all threads
///     Ok::<(), std::io::Error>(())
/// };
/// iter_concurrent_limit!(2, (0..10), try_for_each, op)?;
/// # Ok(())
/// # }
/// ```
///
/// ### map
/// ```rust
/// # use rayon::iter::{IntoParallelIterator, ParallelIterator};
/// # use rayon_iter_concurrent_limit::iter_concurrent_limit;
/// let op = |i: usize| {
///     let alloc = vec![i; 1000]; // limited concurrency
///     alloc.into_par_iter().sum::<usize>() // runs on all threads
/// };
/// let sum =
///     iter_concurrent_limit!(2, (0..100), map, op)
///     .sum::<usize>();
/// assert_eq!(sum, (0..100).into_iter().map(op).sum::<usize>());
/// ```
///
/// ### filter
/// ```rust
/// # use rayon::iter::{IntoParallelIterator, ParallelIterator};
/// # use rayon_iter_concurrent_limit::iter_concurrent_limit;
/// let op = |i: &usize| -> bool {
///     // ... do work with limited concurrency
///     i % 2 == 0
/// };
/// let even =
///     iter_concurrent_limit!(2, (0..100), filter, op)
///     .collect::<Vec<usize>>();
/// assert_eq!(even, (0..100).into_iter().filter(op).collect::<Vec<usize>>());
/// ```
///
/// ### filter_map
/// ```rust
/// # use rayon::iter::{IntoParallelIterator, ParallelIterator};
/// # use rayon_iter_concurrent_limit::iter_concurrent_limit;
/// let op = |i: usize| -> Option<usize> {
///     // ... do work with limited concurrency
///     if i % 2 == 0 { Some(i * 2) } else { None }
/// };
/// let even_doubled =
///     iter_concurrent_limit!(2, (0..100), filter_map, op)
///     .collect::<Vec<usize>>();
/// assert_eq!(even_doubled, (0..100).into_iter().filter_map(op).collect::<Vec<usize>>());
/// ```
///
/// ### any
/// ```rust
/// # use rayon::iter::{IntoParallelIterator, ParallelIterator};
/// # use rayon_iter_concurrent_limit::iter_concurrent_limit;
/// let op = |i: usize| -> bool {
///     // ... do work with limited concurrency
///     i == 50
/// };
/// let any_eq_50 = iter_concurrent_limit!(2, (0..100), any, op);
/// assert_eq!(any_eq_50, (0..100).into_iter().any(op));
/// ```
///
/// ### all
/// ```rust
/// # use rayon::iter::{IntoParallelIterator, ParallelIterator};
/// # use rayon_iter_concurrent_limit::iter_concurrent_limit;
/// let op = |i: usize| -> bool {
///     // ... do work with limited concurrency
///     i == 50
/// };
/// let all_eq_50 = iter_concurrent_limit!(2, (0..100), all, op);
/// assert_eq!(all_eq_50, (0..100).into_iter().all(op));
/// ```
///
#[macro_export]
macro_rules! iter_concurrent_limit {
    ( $concurrent_limit:expr, $iterator:expr, for_each, $op:expr ) => {{
        let concurrent_limit = $concurrent_limit;
        let op = $op;
        if concurrent_limit == 0 {
            $iterator.into_par_iter().for_each(op)
        } else if concurrent_limit == 1 {
            $iterator.into_iter().for_each(op)
        } else {
            let chunks = $crate::iter_subdivide(concurrent_limit, $iterator.into_par_iter());
            chunks.for_each(|chunk| chunk.into_iter().for_each(op))
        }
    }};
    // TODO: for_each_with?
    // TODO: for_each_init?
    ( $concurrent_limit:expr, $iterator:expr, try_for_each, $op:expr ) => {{
        let concurrent_limit = $concurrent_limit;
        let op = $op;
        if concurrent_limit == 0 {
            $iterator.into_par_iter().try_for_each(op)
        } else if concurrent_limit == 1 {
            $iterator.into_iter().try_for_each(op)
        } else {
            let chunks = $crate::iter_subdivide(concurrent_limit, $iterator.into_par_iter());
            chunks.try_for_each(|chunk| chunk.into_iter().try_for_each(op))
        }
    }};
    // TODO: try_for_each_with?
    // TODO: try_for_each_init?
    ( $concurrent_limit:expr, $iterator:expr, map, $map_op:expr ) => {{
        let chunks = $crate::iter_subdivide($concurrent_limit, $iterator.into_par_iter());
        chunks.flat_map_iter(|chunk| chunk.into_iter().map($map_op))
    }};
    // TODO: map_with?
    // TODO: map_init?
    // IGNORE: inspect
    ( $concurrent_limit:expr, $iterator:expr, update, $update_op:expr ) => {{
        let chunks = $crate::iter_subdivide($concurrent_limit, $iterator.into_par_iter());
        chunks.flat_map_iter(|chunk| {
            chunk.into_iter().map(|mut item| {
                $update_op(&mut item);
                item
            })
        })
    }};
    ( $concurrent_limit:expr, $iterator:expr, filter, $filter_op:expr ) => {{
        let chunks = $crate::iter_subdivide($concurrent_limit, $iterator.into_par_iter());
        chunks.flat_map_iter(|chunk| chunk.into_iter().filter($filter_op))
    }};
    ( $concurrent_limit:expr, $iterator:expr, filter_map, $filter_op:expr ) => {{
        let chunks = $crate::iter_subdivide($concurrent_limit, $iterator.into_par_iter());
        chunks.flat_map_iter(|chunk| chunk.into_iter().filter_map($filter_op))
    }};
    // TODO: flat_map?
    // ( $concurrent_limit:expr, $iterator:expr, flat_map, $map_op:expr ) => {{
    //     let chunks = $crate::iter_subdivide($concurrent_limit, $iterator.into_par_iter());
    //     chunks.flat_map_iter(|chunk| chunk.into_iter().map($map_op))
    // }};
    // TODO: flat_map_iter?
    // TODO: reduce?
    // TODO: reduce_with?
    // TODO: try_reduce?
    // TODO: try_reduce_with?
    // TODO: fold?
    // TODO: fold_with?
    // TODO: try_fold?
    // TODO: try_fold_with?
    // ( $concurrent_limit:expr, $iterator:expr, max_by_key, $f:expr ) => {{
    //     let chunks = $crate::iter_subdivide($concurrent_limit, $iterator.into_par_iter());
    //     chunks
    //         .flat_map(|chunk| chunk.into_iter().max_by_key($f))
    //         .max_by_key($f)
    // }};
    // ( $concurrent_limit:expr, $iterator:expr, min_by_key, $f:expr ) => {{
    //     let chunks = iter_subdivide($concurrent_limit, $iterator.into_par_iter());
    //     chunks
    //         .flat_map(|chunk| chunk.into_iter().min_by_key($f))
    //         .min_by_key($f)
    // }};
    // TODO: find_any?
    // TODO: find_first?
    // TODO: find_last?
    // TODO: find_map_any?
    // TODO: find_map_first?
    // TODO: find_map_last?
    ( $concurrent_limit:expr, $iterator:expr, any, $predicate:expr ) => {{
        let concurrent_limit = $concurrent_limit;
        let predicate = $predicate;
        if concurrent_limit == 0 {
            $iterator.into_par_iter().any(predicate)
        } else if concurrent_limit == 1 {
            $iterator.into_iter().any(predicate)
        } else {
            let chunks = $crate::iter_subdivide(concurrent_limit, $iterator.into_par_iter());
            chunks.any(|chunk| chunk.into_iter().any(predicate))
        }
    }};
    ( $concurrent_limit:expr, $iterator:expr, all, $predicate:expr ) => {{
        let concurrent_limit = $concurrent_limit;
        let predicate = $predicate;
        if concurrent_limit == 0 {
            $iterator.into_par_iter().all(predicate)
        } else if concurrent_limit == 1 {
            $iterator.into_iter().all(predicate)
        } else {
            let chunks = $crate::iter_subdivide(concurrent_limit, $iterator.into_par_iter());
            chunks.all(|chunk| chunk.into_iter().all(predicate))
        }
    }};
    // TODO: partition?
    // TODO: partition_map?
    // TODO: take_any_while?
    // TODO: skip_any_while?
    // TODO: IndexedParallelIterator zip, zip_eq, fold_chunks, fold_chunks_with, cmp, partial_cmp, position_any, position_first, position_last, positions?
    ( $concurrent_limit:expr, $iterator:expr, $method:ident, $predicate:expr ) => {{
        std::compile_error!("This macro does not support the requested method");
    }};
}