1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
use super::plumbing::*;
use super::*;
use std::iter;
use std::ops::Range;
use std::usize;

/// `Enumerate` is an iterator that returns the current count along with the element.
/// This struct is created by the [`enumerate()`] method on [`IndexedParallelIterator`]
///
/// [`enumerate()`]: trait.IndexedParallelIterator.html#method.enumerate
/// [`IndexedParallelIterator`]: trait.IndexedParallelIterator.html
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
#[derive(Debug, Clone)]
pub struct Enumerate<I: IndexedParallelIterator> {
    base: I,
}

/// Create a new `Enumerate` iterator.
///
/// NB: a free fn because it is NOT part of the end-user API.
pub fn new<I>(base: I) -> Enumerate<I>
    where I: IndexedParallelIterator
{
    Enumerate { base: base }
}

impl<I> ParallelIterator for Enumerate<I>
    where I: IndexedParallelIterator
{
    type Item = (usize, I::Item);

    fn drive_unindexed<C>(self, consumer: C) -> C::Result
        where C: UnindexedConsumer<Self::Item>
    {
        bridge(self, consumer)
    }

    fn opt_len(&self) -> Option<usize> {
        Some(self.len())
    }
}

impl<I> IndexedParallelIterator for Enumerate<I>
    where I: IndexedParallelIterator
{
    fn drive<C: Consumer<Self::Item>>(self, consumer: C) -> C::Result {
        bridge(self, consumer)
    }

    fn len(&self) -> usize {
        self.base.len()
    }

    fn with_producer<CB>(self, callback: CB) -> CB::Output
        where CB: ProducerCallback<Self::Item>
    {
        return self.base.with_producer(Callback { callback: callback });

        struct Callback<CB> {
            callback: CB,
        }

        impl<I, CB> ProducerCallback<I> for Callback<CB>
            where CB: ProducerCallback<(usize, I)>
        {
            type Output = CB::Output;
            fn callback<P>(self, base: P) -> CB::Output
                where P: Producer<Item = I>
            {
                let producer = EnumerateProducer {
                    base: base,
                    offset: 0,
                };
                self.callback.callback(producer)
            }
        }
    }
}

/// ////////////////////////////////////////////////////////////////////////
/// Producer implementation

struct EnumerateProducer<P> {
    base: P,
    offset: usize,
}

impl<P> Producer for EnumerateProducer<P>
    where P: Producer
{
    type Item = (usize, P::Item);
    type IntoIter = iter::Zip<Range<usize>, P::IntoIter>;

    fn into_iter(self) -> Self::IntoIter {
        // Enumerate only works for IndexedParallelIterators. Since those
        // have a max length of usize::MAX, their max index is
        // usize::MAX - 1, so the range 0..usize::MAX includes all
        // possible indices.
        //
        // However, we should to use a precise end to the range, otherwise
        // reversing the iterator may have to walk back a long ways before
        // `Zip::next_back` can produce anything.
        let base = self.base.into_iter();
        let end = self.offset + base.len();
        (self.offset..end).zip(base)
    }

    fn min_len(&self) -> usize {
        self.base.min_len()
    }
    fn max_len(&self) -> usize {
        self.base.max_len()
    }

    fn split_at(self, index: usize) -> (Self, Self) {
        let (left, right) = self.base.split_at(index);
        (EnumerateProducer {
             base: left,
             offset: self.offset,
         },
         EnumerateProducer {
             base: right,
             offset: self.offset + index,
         })
    }
}