1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
#![allow(deprecated)]
use crate::dirtyalpha::blurred_dirty_alpha;
use crate::error::Error;
use imgref::Img;
use imgref::ImgVec;
use rav1e::prelude::*;
use rgb::RGB8;
use rgb::RGBA8;

/// For [`Encoder::with_internal_color_space`]
#[derive(Debug, Copy, Clone)]
pub enum ColorSpace {
    /// Standard color space for photographic content. Usually the best choice.
    /// This library always uses full-resolution color (4:4:4).
    /// This library will automatically choose between BT.601 or BT.709.
    YCbCr,
    /// RGB channels are encoded without colorspace transformation.
    /// Usually results in larger file sizes, and is less compatible than `YCbCr`.
    /// Use only if the content really makes use of RGB, e.g. anaglyph images or RGB subpixel anti-aliasing.
    RGB,
}

/// Handling of color channels in transparent images. For [`Encoder::with_alpha_color_mode`]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum AlphaColorMode {
    /// Use unassociated alpha channel and leave color channels unchanged, even if there's redundant color data in transparent areas.
    UnassociatedDirty,
    /// Use unassociated alpha channel, but set color channels of transparent areas to a solid color to eliminate invisible data and improve compression.
    UnassociatedClean,
    /// Store color channels of transparent images in premultiplied form.
    /// This requires support for premultiplied alpha in AVIF decoders.
    ///
    /// It may reduce file sizes due to clearing of fully-transparent pixels, but
    /// may also increase file sizes due to creation of new edges in the color channels.
    ///
    /// Note that this is only internal detail for the AVIF file.
    /// It does not change meaning of `RGBA` in this library — it's always unassociated.
    Premultiplied,
}

/// The newly-created image file + extra info FYI
#[non_exhaustive]
#[derive(Clone)]
pub struct EncodedImage {
    /// AVIF (HEIF+AV1) encoded image data
    pub avif_file: Vec<u8>,
    /// FYI: number of bytes of AV1 payload used for the color
    pub color_byte_size: usize,
    /// FYI: number of bytes of AV1 payload used for the alpha channel
    pub alpha_byte_size: usize,
}

/// Encoder config builder
#[derive(Debug, Clone)]
pub struct Encoder {
    /// 0-255 scale
    quantizer: u8,
    /// 0-255 scale
    alpha_quantizer: u8,
    /// rav1e preset 1 (slow) 10 (fast but crappy)
    speed: u8,
    /// True if RGBA input has already been premultiplied. It inserts appropriate metadata.
    premultiplied_alpha: bool,
    /// Which pixel format to use in AVIF file. RGB tends to give larger files.
    color_space: ColorSpace,
    /// How many threads should be used (0 = match core count), None - use global rayon thread pool
    threads: Option<usize>,
    /// [`AlphaColorMode`]
    alpha_color_mode: AlphaColorMode,
    /// 8 or 10
    depth: Option<u8>,
}

/// Builder methods
impl Encoder {
    /// Start here
    #[must_use]
    pub fn new() -> Self {
        Self {
            quantizer: quality_to_quantizer(80.),
            alpha_quantizer: quality_to_quantizer(80.),
            speed: 5,
            depth: None,
            premultiplied_alpha: false,
            color_space: ColorSpace::YCbCr,
            threads: None,
            alpha_color_mode: AlphaColorMode::UnassociatedClean,
        }
    }

    /// Quality `1..=100`. Panics if out of range.
    #[inline(always)]
    #[track_caller]
    #[must_use]
    pub fn with_quality(mut self, quality: f32) -> Self {
        assert!(quality >= 1. && quality <= 100.);
        self.quantizer = quality_to_quantizer(quality);
        self
    }

    /// Depth 8 or 10. `None` picks automatically.
    #[inline(always)]
    #[track_caller]
    #[must_use]
    pub fn with_depth(mut self, depth: Option<u8>) -> Self {
        assert!(depth.map_or(true, |d| d == 8 || d == 10));
        self.depth = depth;
        self
    }

    /// Quality for the alpha channel only. `1..=100`. Panics if out of range.
    #[inline(always)]
    #[track_caller]
    #[must_use]
    pub fn with_alpha_quality(mut self, quality: f32) -> Self {
        assert!(quality >= 1. && quality <= 100.);
        self.alpha_quantizer = quality_to_quantizer(quality);
        self
    }

    /// `1..=10`. 1 = very very slow, but max compression.
    /// 10 = quick, but larger file sizes and lower quality.
    #[inline(always)]
    #[track_caller]
    #[must_use]
    pub fn with_speed(mut self, speed: u8) -> Self {
        assert!(speed >= 1 && speed <= 10);
        self.speed = speed;
        self
    }

    /// Changes how color channels are stored in the image. The default is YCbCr.
    ///
    /// Note that this is only internal detail for the AVIF file, and doesn't
    /// change color space of inputs to encode functions.
    #[inline(always)]
    #[must_use]
    pub fn with_internal_color_space(mut self, color_space: ColorSpace) -> Self {
        self.color_space = color_space;
        self
    }

    /// Configures `rayon` thread pool size.
    /// The default `None` is to use all threads in the default `rayon` thread pool.
    #[inline(always)]
    #[track_caller]
    #[must_use]
    pub fn with_num_threads(mut self, num_threads: Option<usize>) -> Self {
        assert!(num_threads.map_or(true, |n| n > 0));
        self.threads = num_threads;
        self
    }

    /// Configure handling of color channels in transparent images
    #[inline(always)]
    #[must_use]
    pub fn with_alpha_color_mode(mut self, mode: AlphaColorMode) -> Self {
        self.alpha_color_mode = mode;
        self.premultiplied_alpha = mode == AlphaColorMode::Premultiplied;
        self
    }
}

/// Once done with config, call one of the `encode_*` functions
impl Encoder {

    /// Make a new AVIF image from RGBA pixels (non-premultiplied, alpha last)
    ///
    /// Make the `Img` for the `buffer` like this:
    ///
    /// ```rust,ignore
    /// Img::new(&pixels_rgba[..], width, height)
    /// ```
    ///
    /// If you have pixels as `u8` slice, then first do:
    ///
    /// ```rust,ignore
    /// use rgb::ComponentSlice;
    /// let pixels_rgba = pixels_u8.as_rgba();
    /// ```
    ///
    /// If all pixels are opaque, the alpha channel will be left out automatically.
    ///
    /// This function takes 8-bit inputs, but will generate an AVIF file using 10-bit depth.
    ///
    /// returns AVIF file with info about sizes about AV1 payload.
    pub fn encode_rgba(&self, in_buffer: Img<&[rgb::RGBA<u8>]>) -> Result<EncodedImage, Error> {
        let new_alpha = self.convert_alpha(in_buffer);
        let buffer = new_alpha.as_ref().map(|b| b.as_ref()).unwrap_or(in_buffer);
        let use_alpha = buffer.pixels().any(|px| px.a != 255);
        if !use_alpha {
            return self.encode_rgb_internal(buffer.width(), buffer.height(), buffer.pixels().map(|px| px.rgb()))
        }

        let width = buffer.width();
        let height = buffer.height();
        let matrix_coefficients = match self.color_space {
            ColorSpace::YCbCr => MatrixCoefficients::BT601,
            ColorSpace::RGB => MatrixCoefficients::Identity,
        };
        if self.depth == Some(10) {
            let planes = buffer.pixels().map(|px| {
                let (y,u,v) = match self.color_space {
                    ColorSpace::YCbCr => {
                        rgb_to_10_bit_ycbcr(px.rgb(), BT601)
                    },
                    ColorSpace::RGB => {
                        rgb_to_10_bit_gbr(px.rgb())
                    },
                };
                [y, u, v]
            });
            let alpha = buffer.pixels().map(|px| to_ten(px.a));
            self.encode_raw_planes_10_bit(width, height, planes, Some(alpha), PixelRange::Full, matrix_coefficients)
        } else {
            let planes = buffer.pixels().map(|px| {
                let (y,u,v) = match self.color_space {
                    ColorSpace::YCbCr => {
                        rgb_to_8_bit_ycbcr(px.rgb(), BT601)
                    },
                    ColorSpace::RGB => {
                        rgb_to_8_bit_gbr(px.rgb())
                    },
                };
                [y, u, v]
            });
            let alpha = buffer.pixels().map(|px| px.a);
            self.encode_raw_planes_8_bit(width, height, planes, Some(alpha), PixelRange::Full, matrix_coefficients)
        }
    }

    fn convert_alpha(&self, in_buffer: Img<&[RGBA8]>) -> Option<ImgVec<RGBA8>> {
        match self.alpha_color_mode {
            AlphaColorMode::UnassociatedDirty => None,
            AlphaColorMode::UnassociatedClean => {
                blurred_dirty_alpha(in_buffer)
            },
            AlphaColorMode::Premultiplied => {
                let prem = in_buffer.pixels()
                    .filter(|px| px.a != 255)
                    .map(|px| if px.a == 0 { RGBA8::default() } else { RGBA8::new(
                        (u16::from(px.r) * 255 / u16::from(px.a)) as u8,
                        (u16::from(px.r) * 255 / u16::from(px.a)) as u8,
                        (u16::from(px.r) * 255 / u16::from(px.a)) as u8,
                        px.a,
                    )})
                    .collect();
                Some(ImgVec::new(prem, in_buffer.width(), in_buffer.height()))
            },
        }
    }

/// Make a new AVIF image from RGB pixels
///
/// Make the `Img` for the `buffer` like this:
///
/// ```rust,ignore
/// Img::new(&pixels_rgb[..], width, height)
/// ```
///
/// If you have pixels as `u8` slice, then first do:
///
/// ```rust,ignore
/// use rgb::ComponentSlice;
/// let pixels_rgb = pixels_u8.as_rgb();
/// ```
///
/// returns AVIF file, size of color metadata
#[inline]
pub fn encode_rgb(&self, buffer: Img<&[RGB8]>) -> Result<EncodedImage, Error> {
    self.encode_rgb_internal(buffer.width(), buffer.height(), buffer.pixels())
}

fn encode_rgb_internal(&self, width: usize, height: usize, pixels: impl Iterator<Item = RGB8> + Send + Sync) -> Result<EncodedImage, Error> {
    let matrix_coefficients = match self.color_space {
        ColorSpace::YCbCr => MatrixCoefficients::BT601,
        ColorSpace::RGB => MatrixCoefficients::Identity,
    };
    if self.depth == Some(8) {
        let planes = pixels.map(|px| {
            let (y,u,v) = match self.color_space {
                ColorSpace::YCbCr => {
                    rgb_to_8_bit_ycbcr(px, BT601)
                },
                ColorSpace::RGB => {
                    rgb_to_8_bit_gbr(px)
                },
            };
            [y, u, v]
        });
        self.encode_raw_planes_8_bit(width, height, planes, None::<[_; 0]>, PixelRange::Full, matrix_coefficients)
    } else {
        let planes = pixels.map(|px| {
            let (y,u,v) = match self.color_space {
                ColorSpace::YCbCr => {
                    rgb_to_10_bit_ycbcr(px, BT601)
                },
                ColorSpace::RGB => {
                    rgb_to_10_bit_gbr(px)
                },
            };
            [y, u, v]
        });
        self.encode_raw_planes_10_bit(width, height, planes, None::<[_; 0]>, PixelRange::Full, matrix_coefficients)
    }
}

/// Encodes AVIF from 3 planar channels that are in the color space described by `matrix_coefficients`,
/// with sRGB transfer characteristics and color primaries.
///
/// Alpha always uses full range. Chroma subsampling is not supported, and it's a bad idea for AVIF anyway.
/// If there's no alpha, use `None::<[_; 0]>`.
///
/// returns AVIF file, size of color metadata, size of alpha metadata overhead
#[inline]
pub fn encode_raw_planes_8_bit(&self, width: usize, height: usize, planes: impl IntoIterator<Item=[u8; 3]> + Send, alpha: Option<impl IntoIterator<Item=u8> + Send>, color_pixel_range: PixelRange, matrix_coefficients: MatrixCoefficients) -> Result<EncodedImage, Error> {
    self.encode_raw_planes(width, height, planes, alpha, color_pixel_range, matrix_coefficients, 8)
}

/// Encodes AVIF from 3 planar channels that are in the color space described by `matrix_coefficients`,
/// with sRGB transfer characteristics and color primaries.
///
/// The pixels are 10-bit (values `0.=1023`).
///
/// Alpha always uses full range. Chroma subsampling is not supported, and it's a bad idea for AVIF anyway.
/// If there's no alpha, use `None::<[_; 0]>`.
///
/// returns AVIF file, size of color metadata, size of alpha metadata overhead
#[inline]
pub fn encode_raw_planes_10_bit(&self, width: usize, height: usize, planes: impl IntoIterator<Item=[u16; 3]> + Send, alpha: Option<impl IntoIterator<Item=u16> + Send>, color_pixel_range: PixelRange, matrix_coefficients: MatrixCoefficients) -> Result<EncodedImage, Error> {
    self.encode_raw_planes(width, height, planes, alpha, color_pixel_range, matrix_coefficients, 10)
}

#[inline(never)]
fn encode_raw_planes<P: rav1e::Pixel + Default>(&self, width: usize, height: usize, planes: impl IntoIterator<Item=[P; 3]> + Send, alpha: Option<impl IntoIterator<Item=P> + Send>, color_pixel_range: PixelRange, matrix_coefficients: MatrixCoefficients, bit_depth: u8) -> Result<EncodedImage, Error> {
    let color_description = Some(ColorDescription {
        transfer_characteristics: TransferCharacteristics::SRGB,
        color_primaries: ColorPrimaries::BT709, // sRGB-compatible
        matrix_coefficients,
    });

    let threads = self.threads.map(|threads| {
        if threads > 0 { threads } else { rayon::current_num_threads() }
    });

    let encode_color = move || encode_to_av1::<P>(&Av1EncodeConfig {
        width,
        height,
        bit_depth: bit_depth.into(),
        quantizer: self.quantizer.into(),
        speed: SpeedTweaks::from_my_preset(self.speed, self.quantizer),
        threads,
        pixel_range: color_pixel_range,
        chroma_sampling: ChromaSampling::Cs444,
        color_description,
    }, move |frame| init_frame_3(width, height, planes, frame));
    let encode_alpha = move || alpha.map(|alpha| encode_to_av1::<P>(&Av1EncodeConfig {
        width,
        height,
        bit_depth: bit_depth.into(),
        quantizer: self.alpha_quantizer.into(),
        speed: SpeedTweaks::from_my_preset(self.speed, self.alpha_quantizer),
        threads,
        pixel_range: PixelRange::Full,
        chroma_sampling: ChromaSampling::Cs400,
        color_description: None,
    }, |frame| init_frame_1(width, height, alpha, frame)));
    #[cfg(all(target_arch="wasm32", not(target_feature = "atomics")))]
    let (color, alpha) = (encode_color(), encode_alpha());
    #[cfg(not(all(target_arch="wasm32", not(target_feature = "atomics"))))]
    let (color, alpha) = rayon::join(encode_color, encode_alpha);
    let (color, alpha) = (color?, alpha.transpose()?);

    let avif_file = avif_serialize::Aviffy::new()
        .matrix_coefficients(match matrix_coefficients {
            MatrixCoefficients::Identity => avif_serialize::constants::MatrixCoefficients::Rgb,
            MatrixCoefficients::BT709 => avif_serialize::constants::MatrixCoefficients::Bt709,
            MatrixCoefficients::Unspecified => avif_serialize::constants::MatrixCoefficients::Unspecified,
            MatrixCoefficients::BT601 => avif_serialize::constants::MatrixCoefficients::Bt601,
            MatrixCoefficients::YCgCo => avif_serialize::constants::MatrixCoefficients::Ycgco,
            MatrixCoefficients::BT2020NCL => avif_serialize::constants::MatrixCoefficients::Bt2020Ncl,
            MatrixCoefficients::BT2020CL => avif_serialize::constants::MatrixCoefficients::Bt2020Cl,
            _ => return Err(Error::Unsupported("matrix coefficients")),
        })
        .premultiplied_alpha(self.premultiplied_alpha)
        .to_vec(&color, alpha.as_deref(), width as u32, height as u32, bit_depth);
    let color_byte_size = color.len();
    let alpha_byte_size = alpha.as_ref().map_or(0, |a| a.len());

    Ok(EncodedImage {
        avif_file, color_byte_size, alpha_byte_size,
    })
}
}

#[inline(always)]
fn to_ten(x: u8) -> u16 {
    (u16::from(x) << 2) | (u16::from(x) >> 6)
}

#[inline(always)]
fn rgb_to_10_bit_gbr(px: rgb::RGB<u8>) -> (u16, u16, u16) {
    (to_ten(px.g), to_ten(px.b), to_ten(px.r))
}

#[inline(always)]
fn rgb_to_8_bit_gbr(px: rgb::RGB<u8>) -> (u8, u8, u8) {
    (px.g, px.b, px.r)
}

// const REC709: [f32; 3] = [0.2126, 0.7152, 0.0722];
const BT601: [f32; 3] = [0.2990, 0.5870, 0.1140];

#[inline(always)]
fn rgb_to_ycbcr(px: rgb::RGB<u8>, depth: u8, matrix: [f32; 3]) -> (f32, f32, f32) {
    let max_value = ((1<<depth)-1) as f32;
    let scale = max_value/255.;
    let shift = (max_value * 0.5).round();
    let y  = scale * matrix[0] * f32::from(px.r) + scale * matrix[1] * f32::from(px.g) + scale * matrix[2] * f32::from(px.b);
    let cb = (f32::from(px.b) * scale - y).mul_add(0.5/(1.-matrix[2]), shift);
    let cr = (f32::from(px.r) * scale - y).mul_add(0.5/(1.-matrix[0]), shift);
    (y.round(), cb.round(), cr.round())
}

#[inline(always)]
fn rgb_to_10_bit_ycbcr(px: rgb::RGB<u8>, matrix: [f32; 3]) -> (u16, u16, u16) {
    let (y, u, v) = rgb_to_ycbcr(px, 10, matrix);
    (y as u16, u as u16, v as u16)
}

#[inline(always)]
fn rgb_to_8_bit_ycbcr(px: rgb::RGB<u8>, matrix: [f32; 3]) -> (u8, u8, u8) {
    let (y, u, v) = rgb_to_ycbcr(px, 8, matrix);
    (y as u8, u as u8, v as u8)
}

fn quality_to_quantizer(quality: f32) -> u8 {
    let q = quality / 100.;
    let x = if q >= 0.85 { (1. - q) * 3. } else if q > 0.25 { 1. - 0.125 - q * 0.5 } else { 1. - q };
    (x * 255.).round() as u8
}

#[derive(Debug, Copy, Clone)]
struct SpeedTweaks {
    pub speed_preset: u8,

    pub fast_deblock: Option<bool>,
    pub reduced_tx_set: Option<bool>,
    pub tx_domain_distortion: Option<bool>,
    pub tx_domain_rate: Option<bool>,
    pub encode_bottomup: Option<bool>,
    pub rdo_tx_decision: Option<bool>,
    pub cdef: Option<bool>,
    /// loop restoration filter
    pub lrf: Option<bool>,
    pub sgr_complexity_full: Option<bool>,
    pub use_satd_subpel: Option<bool>,
    pub inter_tx_split: Option<bool>,
    pub fine_directional_intra: Option<bool>,
    pub complex_prediction_modes: Option<bool>,
    pub partition_range: Option<(u8, u8)>,
    pub min_tile_size: u16,
}

impl SpeedTweaks {
    pub fn from_my_preset(speed: u8, quantizer: u8) -> Self {
        let low_quality = quantizer < quality_to_quantizer(55.);
        let high_quality = quantizer > quality_to_quantizer(80.);
        let max_block_size = if high_quality { 16 } else { 64 };

        Self {
            speed_preset: speed,

            partition_range: Some(match speed {
                0 => (4, 64.min(max_block_size)),
                1 if low_quality => (4, 64.min(max_block_size)),
                2 if low_quality => (4, 32.min(max_block_size)),
                1..=4 => (4, 16),
                5..=8 => (8, 16),
                _ => (16, 16),
            }),

            complex_prediction_modes: Some(speed <= 1), // 2x-3x slower, 2% better
            sgr_complexity_full: Some(speed <= 2), // 15% slower, barely improves anything -/+1%

            encode_bottomup: Some(speed <= 2), // may be costly (+60%), may even backfire

            // big blocks disabled at 3

            // these two are together?
            rdo_tx_decision: Some(speed <= 4 && !high_quality), // it tends to blur subtle textures
            reduced_tx_set: Some(speed == 4 || speed >= 9), // It interacts with tx_domain_distortion too?

            // 4px blocks disabled at 5

            fine_directional_intra: Some(speed <= 6),
            fast_deblock: Some(speed >= 7 && !high_quality), // mixed bag?

            // 8px blocks disabled at 8
            lrf: Some(low_quality && speed <= 8), // hardly any help for hi-q images. recovers some q at low quality
            cdef: Some(low_quality && speed <= 9), // hardly any help for hi-q images. recovers some q at low quality

            inter_tx_split: Some(speed >= 9), // mixed bag even when it works, and it backfires if not used together with reduced_tx_set
            tx_domain_rate: Some(speed >= 10), // 20% faster, but also 10% larger files!

            tx_domain_distortion: None, // very mixed bag, sometimes helps speed sometimes it doesn't
            use_satd_subpel: Some(false), // doesn't make sense
            min_tile_size: match speed {
                0 => 4096,
                1 => 2048,
                2 => 1024,
                3 => 512,
                4 => 256,
                _ => 128,
            } * if high_quality { 2 } else { 1 },
        }
    }

    pub(crate) fn speed_settings(&self) -> SpeedSettings {
        let mut speed_settings = SpeedSettings::from_preset(self.speed_preset);

        speed_settings.multiref = false;
        speed_settings.rdo_lookahead_frames = 1;
        speed_settings.scene_detection_mode = SceneDetectionSpeed::None;
        speed_settings.motion.include_near_mvs = false;

        if let Some(v) = self.fast_deblock { speed_settings.fast_deblock = v; }
        if let Some(v) = self.reduced_tx_set { speed_settings.transform.reduced_tx_set = v; }
        if let Some(v) = self.tx_domain_distortion { speed_settings.transform.tx_domain_distortion = v; }
        if let Some(v) = self.tx_domain_rate { speed_settings.transform.tx_domain_rate = v; }
        if let Some(v) = self.encode_bottomup { speed_settings.partition.encode_bottomup = v; }
        if let Some(v) = self.rdo_tx_decision { speed_settings.transform.rdo_tx_decision = v; }
        if let Some(v) = self.cdef { speed_settings.cdef = v; }
        if let Some(v) = self.lrf { speed_settings.lrf = v; }
        if let Some(v) = self.inter_tx_split { speed_settings.transform.enable_inter_tx_split = v; }
        if let Some(v) = self.sgr_complexity_full { speed_settings.sgr_complexity = if v { SGRComplexityLevel::Full } else { SGRComplexityLevel::Reduced } };
        if let Some(v) = self.use_satd_subpel { speed_settings.motion.use_satd_subpel = v; }
        if let Some(v) = self.fine_directional_intra { speed_settings.prediction.fine_directional_intra = v; }
        if let Some(v) = self.complex_prediction_modes { speed_settings.prediction.prediction_modes = if v { PredictionModesSetting::ComplexAll } else { PredictionModesSetting::Simple} };
        if let Some((min, max)) = self.partition_range {
            debug_assert!(min <= max);
            fn sz(s: u8) -> BlockSize {
                match s {
                    4 => BlockSize::BLOCK_4X4,
                    8 => BlockSize::BLOCK_8X8,
                    16 => BlockSize::BLOCK_16X16,
                    32 => BlockSize::BLOCK_32X32,
                    64 => BlockSize::BLOCK_64X64,
                    128 => BlockSize::BLOCK_128X128,
                    _ => panic!("bad size {s}"),
                }
            }
            speed_settings.partition.partition_range = PartitionRange::new(sz(min), sz(max));
        }

        speed_settings
    }
}

struct Av1EncodeConfig {
    pub width: usize,
    pub height: usize,
    pub bit_depth: usize,
    pub quantizer: usize,
    pub speed: SpeedTweaks,
    /// 0 means num_cpus
    pub threads: Option<usize>,
    pub pixel_range: PixelRange,
    pub chroma_sampling: ChromaSampling,
    pub color_description: Option<ColorDescription>,
}

fn rav1e_config(p: &Av1EncodeConfig) -> Config {
    // AV1 needs all the CPU power you can give it,
    // except when it'd create inefficiently tiny tiles
    let tiles = {
        let threads = p.threads.unwrap_or_else(rayon::current_num_threads);
        threads.min((p.width * p.height) / (p.speed.min_tile_size as usize).pow(2))
    };
    let speed_settings = p.speed.speed_settings();
    let cfg = Config::new()
        .with_encoder_config(EncoderConfig {
        width: p.width,
        height: p.height,
        time_base: Rational::new(1, 1),
        sample_aspect_ratio: Rational::new(1, 1),
        bit_depth: p.bit_depth,
        chroma_sampling: p.chroma_sampling,
        chroma_sample_position: ChromaSamplePosition::Unknown,
        pixel_range: p.pixel_range,
        color_description: p.color_description,
        mastering_display: None,
        content_light: None,
        enable_timing_info: false,
        still_picture: true,
        error_resilient: false,
        switch_frame_interval: 0,
        min_key_frame_interval: 0,
        max_key_frame_interval: 0,
        reservoir_frame_delay: None,
        low_latency: false,
        quantizer: p.quantizer,
        min_quantizer: p.quantizer as _,
        bitrate: 0,
        tune: Tune::Psychovisual,
        tile_cols: 0,
        tile_rows: 0,
        tiles,
        film_grain_params: None,
        level_idx: None,
        speed_settings,
    });

    if let Some(threads) = p.threads {
        cfg.with_threads(threads)
    } else {
        cfg
    }
}

fn init_frame_3<P: rav1e::Pixel + Default>(width: usize, height: usize, planes: impl IntoIterator<Item=[P; 3]> + Send, frame: &mut Frame<P>) -> Result<(), Error> {
    let mut f = frame.planes.iter_mut();
    let mut planes = planes.into_iter();

    // it doesn't seem to be necessary to fill padding area
    let mut y = f.next().unwrap().mut_slice(Default::default());
    let mut u = f.next().unwrap().mut_slice(Default::default());
    let mut v = f.next().unwrap().mut_slice(Default::default());

    for ((y, u), v) in y.rows_iter_mut().zip(u.rows_iter_mut()).zip(v.rows_iter_mut()).take(height) {
        let y = &mut y[..width];
        let u = &mut u[..width];
        let v = &mut v[..width];
        for ((y, u), v) in y.iter_mut().zip(u).zip(v) {
            let px = planes.next().ok_or(Error::TooFewPixels)?;
            *y = px[0];
            *u = px[1];
            *v = px[2];
        }
    }
    Ok(())
}

fn init_frame_1<P: rav1e::Pixel + Default>(width: usize, height: usize, planes: impl IntoIterator<Item=P> + Send, frame: &mut Frame<P>) -> Result<(), Error> {
    let mut y = frame.planes[0].mut_slice(Default::default());
    let mut planes = planes.into_iter();

    for y in y.rows_iter_mut().take(height) {
        let y = &mut y[..width];
        for y in y.iter_mut() {
            *y = planes.next().ok_or(Error::TooFewPixels)?;
        }
    }
    Ok(())
}

#[inline(never)]
fn encode_to_av1<P: rav1e::Pixel>(p: &Av1EncodeConfig, init: impl FnOnce(&mut Frame<P>) -> Result<(), Error>) -> Result<Vec<u8>, Error> {
    let mut ctx: Context<P> = rav1e_config(p).new_context()?;
    let mut frame = ctx.new_frame();

    init(&mut frame)?;
    ctx.send_frame(frame)?;
    ctx.flush();

    let mut out = Vec::new();
    loop {
        match ctx.receive_packet() {
            Ok(mut packet) => match packet.frame_type {
                FrameType::KEY => {
                    out.append(&mut packet.data);
                }
                _ => continue,
            },
            Err(EncoderStatus::Encoded) |
            Err(EncoderStatus::LimitReached) => break,
            Err(err) => Err(err)?,
        }
    }
    Ok(out)
}