1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
// Copyright (c) 2019-2020, The rav1e contributors. All rights reserved
//
// This source code is subject to the terms of the BSD 2 Clause License and
// the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
// was not distributed with this source code in the LICENSE file, you can
// obtain it at www.aomedia.org/license/software. If the Alliance for Open
// Media Patent License 1.0 was not distributed with this source code in the
// PATENTS file, you can obtain it at www.aomedia.org/license/patent.

use crate::api::color::ChromaSampling;
use crate::api::ContextInner;
use crate::encoder::TEMPORAL_DELIMITER;
use crate::quantize::{ac_q, dc_q, select_ac_qi, select_dc_qi};
use crate::util::{clamp, ILog, Pixel};
use std::cmp;

// The number of frame sub-types for which we track distinct parameters.
// This does not include FRAME_SUBTYPE_SEF, because we don't need to do any
//  parameter tracking for Show Existing Frame frames.
pub const FRAME_NSUBTYPES: usize = 4;

pub const FRAME_SUBTYPE_I: usize = 0;
pub const FRAME_SUBTYPE_P: usize = 1;
#[allow(unused)]
pub const FRAME_SUBTYPE_B0: usize = 2;
#[allow(unused)]
pub const FRAME_SUBTYPE_B1: usize = 3;
pub const FRAME_SUBTYPE_SEF: usize = 4;

const PASS_SINGLE: i32 = 0;
const PASS_1: i32 = 1;
const PASS_2: i32 = 2;
const PASS_2_PLUS_1: i32 = 3;

// Magic value at the start of the 2-pass stats file
const TWOPASS_MAGIC: i32 = 0x50324156;
// Version number for the 2-pass stats file
const TWOPASS_VERSION: i32 = 1;
// 4 byte magic + 4 byte version + 4 byte TU count + 4 byte SEF frame count
//  + FRAME_NSUBTYPES*(4 byte frame count + 1 byte exp + 8 byte scale_sum)
pub(crate) const TWOPASS_HEADER_SZ: usize = 16 + FRAME_NSUBTYPES * (4 + 1 + 8);
// 4 byte frame type (show_frame and fti jointly coded) + 4 byte log_scale_q24
const TWOPASS_PACKET_SZ: usize = 8;

const SEF_BITS: i64 = 24;

// The scale of AV1 quantizer tables (relative to the pixel domain), i.e., Q3.
pub(crate) const QSCALE: i32 = 3;

// We clamp the actual I and B frame delays to a minimum of 10 to work
//  within the range of values where later incrementing the delay works as
//  designed.
// 10 is not an exact choice, but rather a good working trade-off.
const INTER_DELAY_TARGET_MIN: i32 = 10;

// The base quantizer for a frame is adjusted based on the frame type using the
//  formula (log_qp*mqp + dqp), where log_qp is the base-2 logarithm of the
//  "linear" quantizer (the actual factor by which coefficients are divided).
// Because log_qp has an implicit offset built in based on the scale of the
//  coefficients (which depends on the pixel bit depth and the transform
//  scale), we normalize the quantizer to the equivalent for 8-bit pixels with
//  orthonormal transforms for the purposes of rate modeling.
const MQP_Q12: &[i32; FRAME_NSUBTYPES] = &[
  // TODO: Use a const function once f64 operations in const functions are
  //  stable.
  (1.0 * (1 << 12) as f64) as i32,
  (1.0 * (1 << 12) as f64) as i32,
  (1.0 * (1 << 12) as f64) as i32,
  (1.0 * (1 << 12) as f64) as i32,
];

// The ratio 33_810_170.0 / 86_043_287.0 was derived by approximating the median
// of a change of 15 quantizer steps in the quantizer tables.
const DQP_Q57: &[i64; FRAME_NSUBTYPES] = &[
  (-(33_810_170.0 / 86_043_287.0) * (1i64 << 57) as f64) as i64,
  (0.0 * (1i64 << 57) as f64) as i64,
  ((33_810_170.0 / 86_043_287.0) * (1i64 << 57) as f64) as i64,
  (2.0 * (33_810_170.0 / 86_043_287.0) * (1i64 << 57) as f64) as i64,
];

// For 8-bit-depth inter frames, log_q_y is derived from log_target_q with a
//  linear model:
//  log_q_y = log_target_q + (log_target_q >> 32) * Q_MODEL_MUL + Q_MODEL_ADD
// Derivation of the linear models:
//  https://github.com/xiph/rav1e/blob/d02bdbd3b0b7b2cb9fc301031cc6a4e67a567a5c/doc/quantizer-weight-analysis.ipynb
#[rustfmt::skip]
const Q_MODEL_ADD: [i64; 4] = [
  // 4:2:0
  -0x24_4FE7_ECB3_DD90,
  // 4:2:2
  -0x37_41DA_38AD_0924,
  // 4:4:4
  -0x70_83BD_A626_311C,
  // 4:0:0
  0,
];
#[rustfmt::skip]
const Q_MODEL_MUL: [i64; 4] = [
  // 4:2:0
  0x8A0_50DD,
  // 4:2:2
  0x887_7666,
  // 4:4:4
  0x8D4_A712,
  // 4:0:0
  0,
];

// Convert an integer into a Q57 fixed-point fraction.
// The integer must be in the range -64 to 63, inclusive.
pub(crate) const fn q57(v: i32) -> i64 {
  // TODO: Add assert if it ever becomes possible to do in a const function.
  (v as i64) << 57
}

#[rustfmt::skip]
const ATANH_LOG2: &[i64; 32] = &[
  0x32B8_0347_3F7A_D0F4, 0x2F2A_71BD_4E25_E916, 0x2E68_B244_BB93_BA06,
  0x2E39_FB91_98CE_62E4, 0x2E2E_683F_6856_5C8F, 0x2E2B_850B_E207_7FC1,
  0x2E2A_CC58_FE7B_78DB, 0x2E2A_9E2D_E52F_D5F2, 0x2E2A_92A3_38D5_3EEC,
  0x2E2A_8FC0_8F5E_19B6, 0x2E2A_8F07_E51A_485E, 0x2E2A_8ED9_BA8A_F388,
  0x2E2A_8ECE_2FE7_384A, 0x2E2A_8ECB_4D3E_4B1A, 0x2E2A_8ECA_9494_0FE8,
  0x2E2A_8ECA_6669_811D, 0x2E2A_8ECA_5ADE_DD6A, 0x2E2A_8ECA_57FC_347E,
  0x2E2A_8ECA_5743_8A43, 0x2E2A_8ECA_5715_5FB4, 0x2E2A_8ECA_5709_D510,
  0x2E2A_8ECA_5706_F267, 0x2E2A_8ECA_5706_39BD, 0x2E2A_8ECA_5706_0B92,
  0x2E2A_8ECA_5706_0008, 0x2E2A_8ECA_5705_FD25, 0x2E2A_8ECA_5705_FC6C,
  0x2E2A_8ECA_5705_FC3E, 0x2E2A_8ECA_5705_FC33, 0x2E2A_8ECA_5705_FC30,
  0x2E2A_8ECA_5705_FC2F, 0x2E2A_8ECA_5705_FC2F
];

// Computes the binary exponential of logq57.
// input: a log base 2 in Q57 format.
// output: a 64 bit integer in Q0 (no fraction).
// TODO: Mark const once we can use local variables in a const function.
pub(crate) fn bexp64(logq57: i64) -> i64 {
  let ipart = (logq57 >> 57) as i32;
  if ipart < 0 {
    return 0;
  }
  if ipart >= 63 {
    return 0x7FFF_FFFF_FFFF_FFFF;
  }
  // z is the fractional part of the log in Q62 format.
  // We need 1 bit of headroom since the magnitude can get larger than 1
  //  during the iteration, and a sign bit.
  let mut z = logq57 - q57(ipart);
  let mut w: i64;
  if z != 0 {
    // Rust has 128 bit multiplies, so it should be possible to do this
    //  faster without losing accuracy.
    z <<= 5;
    // w is the exponential in Q61 format (since it also needs headroom and can
    //  get as large as 2.0); we could get another bit if we dropped the sign,
    //  but we'll recover that bit later anyway.
    // Ideally this should start out as
    //   \lim_{n->\infty} 2^{61}/\product_{i=1}^n \sqrt{1-2^{-2i}}
    //  but in order to guarantee convergence we have to repeat iterations 4,
    //  13 (=3*4+1), and 40 (=3*13+1, etc.), so it winds up somewhat larger.
    w = 0x26A3_D0E4_01DD_846D;
    let mut i: i64 = 0;
    loop {
      let mask = -((z < 0) as i64);
      w += ((w >> (i + 1)) + mask) ^ mask;
      z -= (ATANH_LOG2[i as usize] + mask) ^ mask;
      // Repeat iteration 4.
      if i >= 3 {
        break;
      }
      z *= 2;
      i += 1;
    }
    loop {
      let mask = -((z < 0) as i64);
      w += ((w >> (i + 1)) + mask) ^ mask;
      z -= (ATANH_LOG2[i as usize] + mask) ^ mask;
      // Repeat iteration 13.
      if i >= 12 {
        break;
      }
      z *= 2;
      i += 1;
    }
    while i < 32 {
      let mask = -((z < 0) as i64);
      w += ((w >> (i + 1)) + mask) ^ mask;
      z = (z - ((ATANH_LOG2[i as usize] + mask) ^ mask)) * 2;
      i += 1;
    }
    // Skip the remaining iterations unless we really require that much
    //  precision.
    // We could have bailed out earlier for smaller iparts, but that would
    //  require initializing w from a table, as the limit doesn't converge to
    //  61-bit precision until n=30.
    let mut wlo: i32 = 0;
    if ipart > 30 {
      // For these iterations, we just update the low bits, as the high bits
      //  can't possibly be affected.
      // OD_ATANH_LOG2 has also converged (it actually did so one iteration
      //  earlier, but that's no reason for an extra special case).
      loop {
        let mask = -((z < 0) as i64);
        wlo += (((w >> i) + mask) ^ mask) as i32;
        z -= (ATANH_LOG2[31] + mask) ^ mask;
        // Repeat iteration 40.
        if i >= 39 {
          break;
        }
        z *= 2;
        i += 1;
      }
      while i < 61 {
        let mask = -((z < 0) as i64);
        wlo += (((w >> i) + mask) ^ mask) as i32;
        z = (z - ((ATANH_LOG2[31] + mask) ^ mask)) * 2;
        i += 1;
      }
    }
    w = (w << 1) + (wlo as i64);
  } else {
    w = 1i64 << 62;
  }
  if ipart < 62 {
    w = ((w >> (61 - ipart)) + 1) >> 1;
  }
  w
}

// Computes the binary log of w.
// input: a 64-bit integer in Q0 (no fraction).
// output: a 64-bit log in Q57.
// TODO: Mark const once we can use local variables in a const function.
fn blog64(w: i64) -> i64 {
  let mut w = w;
  if w <= 0 {
    return -1;
  }
  let ipart = w.ilog() as i32 - 1;
  if ipart > 61 {
    w >>= ipart - 61;
  } else {
    w <<= 61 - ipart;
  }
  // z is the fractional part of the log in Q61 format.
  let mut z: i64 = 0;
  if (w & (w - 1)) != 0 {
    // Rust has 128 bit multiplies, so it should be possible to do this
    //  faster without losing accuracy.
    // x and y are the cosh() and sinh(), respectively, in Q61 format.
    // We are computing z = 2*atanh(y/x) = 2*atanh((w - 1)/(w + 1)).
    let mut x = w + (1i64 << 61);
    let mut y = w - (1i64 << 61);
    for i in 0..4 {
      let mask = -((y < 0) as i64);
      z += ((ATANH_LOG2[i as usize] >> i) + mask) ^ mask;
      let u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    // Repeat iteration 4.
    for i in 3..13 {
      let mask = -((y < 0) as i64);
      z += ((ATANH_LOG2[i as usize] >> i) + mask) ^ mask;
      let u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    // Repeat iteration 13.
    for i in 12..32 {
      let mask = -((y < 0) as i64);
      z += ((ATANH_LOG2[i as usize] >> i) + mask) ^ mask;
      let u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    // OD_ATANH_LOG2 has converged.
    for i in 32..40 {
      let mask = -((y < 0) as i64);
      z += ((ATANH_LOG2[31] >> i) + mask) ^ mask;
      let u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    // Repeat iteration 40.
    for i in 39..62 {
      let mask = -((y < 0) as i64);
      z += ((ATANH_LOG2[31] >> i) + mask) ^ mask;
      let u = x >> (i + 1);
      x -= ((y >> (i + 1)) + mask) ^ mask;
      y -= (u + mask) ^ mask;
    }
    z = (z + 8) >> 4;
  }
  q57(ipart) + z
}

// Converts a Q57 fixed-point fraction to Q24 by rounding.
const fn q57_to_q24(v: i64) -> i32 {
  (((v >> 32) + 1) >> 1) as i32
}

// Converts a Q24 fixed-point fraction to Q57.
const fn q24_to_q57(v: i32) -> i64 {
  (v as i64) << 33
}

// Binary exponentiation of a log_scale with 24-bit fractional precision and
//  saturation.
// log_scale: A binary logarithm in Q24 format.
// Return: The binary exponential in Q24 format, saturated to 2**47 - 1 if
//  log_scale was too large.
fn bexp_q24(log_scale: i32) -> i64 {
  if log_scale < 23 << 24 {
    let ret = bexp64(((log_scale as i64) << 33) + q57(24));
    if ret < (1i64 << 47) - 1 {
      return ret;
    }
  }
  (1i64 << 47) - 1
}

#[rustfmt::skip]
const ROUGH_TAN_LOOKUP: &[u16; 18] = &[
     0,   358,   722,  1098,  1491,  1910,
  2365,  2868,  3437,  4096,  4881,  5850,
  7094,  8784, 11254, 15286, 23230, 46817
];

// A digital approximation of a 2nd-order low-pass Bessel follower.
// We use this for rate control because it has fast reaction time, but is
//  critically damped.
pub struct IIRBessel2 {
  c: [i32; 2],
  g: i32,
  x: [i32; 2],
  y: [i32; 2],
}

// alpha is Q24 in the range [0,0.5).
// The return value is 5.12.
// TODO: Mark const once we can use local variables in a const function.
fn warp_alpha(alpha: i32) -> i32 {
  let i = ((alpha * 36) >> 24).min(16);
  let t0 = ROUGH_TAN_LOOKUP[i as usize];
  let t1 = ROUGH_TAN_LOOKUP[i as usize + 1];
  let d = alpha * 36 - (i << 24);
  ((((t0 as i64) << 32) + (((t1 - t0) << 8) as i64) * (d as i64)) >> 32) as i32
}

// Compute Bessel filter coefficients with the specified delay.
// Return: Filter parameters (c[0], c[1], g).
fn iir_bessel2_get_parameters(delay: i32) -> (i32, i32, i32) {
  // This borrows some code from an unreleased version of Postfish.
  // See the recipe at http://unicorn.us.com/alex/2polefilters.html for details
  //  on deriving the filter coefficients.
  // alpha is Q24
  let alpha = (1 << 24) / delay;
  // warp is 7.12 (5.12? the max value is 70386 in Q12).
  let warp = warp_alpha(alpha).max(1) as i64;
  // k1 is 9.12 (6.12?)
  let k1 = 3 * warp;
  // k2 is 16.24 (11.24?)
  let k2 = k1 * warp;
  // d is 16.15 (10.15?)
  let d = ((((1 << 12) + k1) << 12) + k2 + 256) >> 9;
  // a is 0.32, since d is larger than both 1.0 and k2
  let a = (k2 << 23) / d;
  // ik2 is 25.24
  let ik2 = (1i64 << 48) / k2;
  // b1 is Q56; in practice, the integer ranges between -2 and 2.
  let b1 = 2 * a * (ik2 - (1i64 << 24));
  // b2 is Q56; in practice, the integer ranges between -2 and 2.
  let b2 = (1i64 << 56) - ((4 * a) << 24) - b1;
  // All of the filter parameters are Q24.
  (
    ((b1 + (1i64 << 31)) >> 32) as i32,
    ((b2 + (1i64 << 31)) >> 32) as i32,
    ((a + 128) >> 8) as i32,
  )
}

impl IIRBessel2 {
  pub fn new(delay: i32, value: i32) -> IIRBessel2 {
    let (c0, c1, g) = iir_bessel2_get_parameters(delay);
    IIRBessel2 { c: [c0, c1], g, x: [value, value], y: [value, value] }
  }

  // Re-initialize Bessel filter coefficients with the specified delay.
  // This does not alter the x/y state, but changes the reaction time of the
  //  filter.
  // Altering the time constant of a reactive filter without altering internal
  //  state is something that has to be done carefuly, but our design operates
  //  at high enough delays and with small enough time constant changes to make
  //  it safe.
  pub fn reinit(&mut self, delay: i32) {
    let (c0, c1, g) = iir_bessel2_get_parameters(delay);
    self.c[0] = c0;
    self.c[1] = c1;
    self.g = g;
  }

  pub fn update(&mut self, x: i32) -> i32 {
    let c0 = self.c[0] as i64;
    let c1 = self.c[1] as i64;
    let g = self.g as i64;
    let x0 = self.x[0] as i64;
    let x1 = self.x[1] as i64;
    let y0 = self.y[0] as i64;
    let y1 = self.y[1] as i64;
    let ya =
      ((((x as i64) + x0 * 2 + x1) * g + y0 * c0 + y1 * c1 + (1i64 << 23))
        >> 24) as i32;
    self.x[1] = self.x[0];
    self.x[0] = x;
    self.y[1] = self.y[0];
    self.y[0] = ya;
    ya
  }
}

#[derive(Copy, Clone)]
struct RCFrameMetrics {
  // The log base 2 of the scale factor for this frame in Q24 format.
  log_scale_q24: i32,
  // The frame type from pass 1
  fti: usize,
  // Whether or not the frame was hidden in pass 1
  show_frame: bool,
  // TODO: The input frame number corresponding to this frame in the input.
  // input_frameno: u32
  // TODO vfr: PTS
}

impl RCFrameMetrics {
  const fn new() -> RCFrameMetrics {
    RCFrameMetrics { log_scale_q24: 0, fti: 0, show_frame: false }
  }
}

/// Rate control pass summary
///
/// It contains encoding information related to the whole previous
/// encoding pass.
#[derive(Debug, Default, Clone)]
pub struct RCSummary {
  pub(crate) ntus: i32,
  nframes: [i32; FRAME_NSUBTYPES + 1],
  exp: [u8; FRAME_NSUBTYPES],
  scale_sum: [i64; FRAME_NSUBTYPES],
  pub(crate) total: i32,
}

// Backing storage to deserialize Summary and Per-Frame pass data
//
// Can store up to a full header size since it is the largest of the two
// packet kinds.
pub(crate) struct RCDeserialize {
  // The current byte position in the frame metrics buffer.
  pass2_buffer_pos: usize,
  // In pass 2, this represents the number of bytes that are available in the
  //  input buffer.
  pass2_buffer_fill: usize,
  // Buffer for current frame metrics in pass 2.
  pass2_buffer: [u8; TWOPASS_HEADER_SZ],
}

impl Default for RCDeserialize {
  fn default() -> Self {
    RCDeserialize {
      pass2_buffer: [0; TWOPASS_HEADER_SZ],
      pass2_buffer_pos: 0,
      pass2_buffer_fill: 0,
    }
  }
}

impl RCDeserialize {
  // Fill the backing storage by reading enough bytes from the
  // buf slice until goal bytes are available for parsing.
  //
  // goal must be at most TWOPASS_HEADER_SZ.
  pub(crate) fn buffer_fill(
    &mut self, buf: &[u8], consumed: usize, goal: usize,
  ) -> usize {
    let mut consumed = consumed;
    while self.pass2_buffer_fill < goal && consumed < buf.len() {
      self.pass2_buffer[self.pass2_buffer_fill] = buf[consumed];
      self.pass2_buffer_fill += 1;
      consumed += 1;
    }
    consumed
  }

  // Read the next n bytes as i64.
  // n must be within 1 and 8
  fn unbuffer_val(&mut self, n: usize) -> i64 {
    let mut bytes = n;
    let mut ret = 0;
    let mut shift = 0;
    while bytes > 0 {
      bytes -= 1;
      ret |= (self.pass2_buffer[self.pass2_buffer_pos] as i64) << shift;
      self.pass2_buffer_pos += 1;
      shift += 8;
    }
    ret
  }

  // Read metrics for the next frame.
  fn parse_metrics(&mut self) -> Result<RCFrameMetrics, String> {
    debug_assert!(self.pass2_buffer_fill >= TWOPASS_PACKET_SZ);
    let ft_val = self.unbuffer_val(4);
    let show_frame = (ft_val >> 31) != 0;
    let fti = (ft_val & 0x7FFFFFFF) as usize;
    // Make sure the frame type is valid.
    if fti > FRAME_NSUBTYPES {
      return Err("Invalid frame type".to_string());
    }
    let log_scale_q24 = self.unbuffer_val(4) as i32;
    Ok(RCFrameMetrics { log_scale_q24, fti, show_frame })
  }

  // Read the summary header data.
  pub(crate) fn parse_summary(&mut self) -> Result<RCSummary, String> {
    // check the magic value and version number.
    if self.unbuffer_val(4) != TWOPASS_MAGIC as i64 {
      return Err("Magic value mismatch".to_string());
    }
    if self.unbuffer_val(4) != TWOPASS_VERSION as i64 {
      return Err("Version number mismatch".to_string());
    }
    let mut s =
      RCSummary { ntus: self.unbuffer_val(4) as i32, ..Default::default() };

    // Make sure the file claims to have at least one TU.
    // Otherwise we probably got the placeholder data from an aborted
    //  pass 1.
    if s.ntus < 1 {
      return Err("No TUs found in first pass summary".to_string());
    }
    let mut total: i32 = 0;
    for nframes in s.nframes.iter_mut() {
      let n = self.unbuffer_val(4) as i32;
      if n < 0 {
        return Err("Got negative frame count".to_string());
      }
      total = total
        .checked_add(n)
        .ok_or_else(|| "Frame count too large".to_string())?;

      *nframes = n;
    }

    // We can't have more TUs than frames.
    if s.ntus > total {
      return Err("More TUs than frames".to_string());
    }

    s.total = total;

    for exp in s.exp.iter_mut() {
      *exp = self.unbuffer_val(1) as u8;
    }

    for scale_sum in s.scale_sum.iter_mut() {
      *scale_sum = self.unbuffer_val(8);
      if *scale_sum < 0 {
        return Err("Got negative scale sum".to_string());
      }
    }
    Ok(s)
  }
}

pub struct RCState {
  // The target bit-rate in bits per second.
  target_bitrate: i32,
  // The number of TUs over which to distribute the reservoir usage.
  // We use TUs because in our leaky bucket model, we only add bits to the
  //  reservoir on TU boundaries.
  reservoir_frame_delay: i32,
  // Whether or not the reservoir_frame_delay was explicitly specified by the
  //  user, or is the default value.
  reservoir_frame_delay_is_set: bool,
  // The maximum quantizer index to allow (for the luma AC coefficients, other
  //  quantizers will still be adjusted to match).
  maybe_ac_qi_max: Option<u8>,
  // The minimum quantizer index to allow (for the luma AC coefficients).
  ac_qi_min: u8,
  // Will we drop frames to meet bitrate requirements?
  drop_frames: bool,
  // Do we respect the maximum reservoir fullness?
  cap_overflow: bool,
  // Can the reservoir go negative?
  cap_underflow: bool,
  // The log of the first-pass base quantizer.
  pass1_log_base_q: i64,
  // Two-pass mode state.
  // PASS_SINGLE => 1-pass encoding.
  // PASS_1 => 1st pass of 2-pass encoding.
  // PASS_2 => 2nd pass of 2-pass encoding.
  // PASS_2_PLUS_1 => 2nd pass of 2-pass encoding, but also emitting pass 1
  //  data again.
  twopass_state: i32,
  // The log of the number of pixels in a frame in Q57 format.
  log_npixels: i64,
  // The target average bits per Temporal Unit (input frame).
  bits_per_tu: i64,
  // The current bit reservoir fullness (bits available to be used).
  reservoir_fullness: i64,
  // The target buffer fullness.
  // This is where we'd like to be by the last keyframe that appears in the
  //  next reservoir_frame_delay frames.
  reservoir_target: i64,
  // The maximum buffer fullness (total size of the buffer).
  reservoir_max: i64,
  // The log of estimated scale factor for the rate model in Q57 format.
  //
  // TODO: Convert to Q23 or figure out a better way to avoid overflow
  // once 2-pass mode is introduced, if required.
  log_scale: [i64; FRAME_NSUBTYPES],
  // The exponent used in the rate model in Q6 format.
  exp: [u8; FRAME_NSUBTYPES],
  // The log of an estimated scale factor used to obtain the real framerate,
  //  for VFR sources or, e.g., 12 fps content doubled to 24 fps, etc.
  // TODO vfr: log_vfr_scale: i64,
  // Second-order lowpass filters to track scale and VFR.
  scalefilter: [IIRBessel2; FRAME_NSUBTYPES],
  // TODO vfr: vfrfilter: IIRBessel2,
  // The number of frames of each type we have seen, for filter adaptation
  //  purposes.
  // These are only 32 bits to guarantee that we can sum the scales over the
  //  whole file without overflow in a 64-bit int.
  // That limits us to 2.268 years at 60 fps (minus 33% with re-ordering).
  nframes: [i32; FRAME_NSUBTYPES + 1],
  inter_delay: [i32; FRAME_NSUBTYPES - 1],
  inter_delay_target: i32,
  // The total accumulated estimation bias.
  rate_bias: i64,
  // The number of (non-Show Existing Frame) frames that have been encoded.
  nencoded_frames: i64,
  // The number of Show Existing Frames that have been emitted.
  nsef_frames: i64,
  // Buffer for current frame metrics in pass 1.
  pass1_buffer: [u8; TWOPASS_HEADER_SZ],
  // Whether or not the user has retrieved the pass 1 data for the last frame.
  // For PASS_1 or PASS_2_PLUS_1 encoding, this is set to false after each
  //  frame is encoded, and must be set to true by calling twopass_out() before
  //  the next frame can be encoded.
  pub pass1_data_retrieved: bool,
  // Marks whether or not the user has retrieved the summary data at the end of
  //  the encode.
  pass1_summary_retrieved: bool,
  // Whether or not the user has provided enough data to encode in the second
  //  pass.
  // For PASS_2 or PASS_2_PLUS_1 encoding, this is set to false after each
  //  frame, and must be set to true by calling twopass_in() before the next
  //  frame can be encoded.
  pass2_data_ready: bool,
  // TODO: Add a way to force the next frame to be a keyframe in 2-pass mode.
  // Right now we are relying on keyframe detection to detect the same
  //  keyframes.
  // The metrics for the previous frame.
  prev_metrics: RCFrameMetrics,
  // The metrics for the current frame.
  cur_metrics: RCFrameMetrics,
  // The buffered metrics for future frames.
  frame_metrics: Vec<RCFrameMetrics>,
  // The total number of frames still in use in the circular metric buffer.
  nframe_metrics: usize,
  // The index of the current frame in the circular metric buffer.
  frame_metrics_head: usize,
  // Data deserialization
  des: RCDeserialize,
  // The TU count encoded so far.
  ntus: i32,
  // The TU count for the whole file.
  ntus_total: i32,
  // The remaining TU count.
  ntus_left: i32,
  // The frame count of each frame subtype in the whole file.
  nframes_total: [i32; FRAME_NSUBTYPES + 1],
  // The sum of those counts.
  nframes_total_total: i32,
  // The number of frames of each subtype yet to be processed.
  nframes_left: [i32; FRAME_NSUBTYPES + 1],
  // The sum of the scale values for each frame subtype.
  scale_sum: [i64; FRAME_NSUBTYPES],
  // The number of TUs represented by the current scale sums.
  scale_window_ntus: i32,
  // The frame count of each frame subtype in the current scale window.
  scale_window_nframes: [i32; FRAME_NSUBTYPES + 1],
  // The sum of the scale values for each frame subtype in the current window.
  scale_window_sum: [i64; FRAME_NSUBTYPES],
}

// TODO: Separate qi values for each color plane.
pub struct QuantizerParameters {
  // The full-precision, unmodulated log quantizer upon which our modulated
  //  quantizer indices are based.
  // This is only used to limit sudden quality changes from frame to frame, and
  //  as such is not adjusted when we encounter buffer overrun or underrun.
  pub log_base_q: i64,
  // The full-precision log quantizer modulated by the current frame type upon
  //  which our quantizer indices are based (including any adjustments to
  //  prevent buffer overrun or underrun).
  // This is used when estimating the scale parameter once we know the actual
  //  bit usage of a frame.
  pub log_target_q: i64,
  pub dc_qi: [u8; 3],
  pub ac_qi: [u8; 3],
  pub lambda: f64,
  pub dist_scale: [f64; 3],
}

const Q57_SQUARE_EXP_SCALE: f64 =
  (2.0 * ::std::f64::consts::LN_2) / ((1i64 << 57) as f64);

// Daala style log-offset for chroma quantizers
// TODO: Optimal offsets for more configurations than just BT.709
fn chroma_offset(
  log_target_q: i64, chroma_sampling: ChromaSampling,
) -> (i64, i64) {
  let x = log_target_q.max(0);
  // Gradient optimized for CIEDE2000+PSNR on subset3
  let y = match chroma_sampling {
    ChromaSampling::Cs400 => 0,
    ChromaSampling::Cs420 => (x >> 2) + (x >> 6), // 0.266
    ChromaSampling::Cs422 => (x >> 3) + (x >> 4) - (x >> 7), // 0.180
    ChromaSampling::Cs444 => (x >> 4) + (x >> 5) + (x >> 8), // 0.098
  };
  // blog64(7) - blog64(4); blog64(5) - blog64(4)
  (0x19D_5D9F_D501_0B37 - y, 0xA4_D3C2_5E68_DC58 - y)
}

impl QuantizerParameters {
  fn new_from_log_q(
    log_base_q: i64, log_target_q: i64, bit_depth: usize,
    chroma_sampling: ChromaSampling, is_intra: bool,
  ) -> QuantizerParameters {
    let scale = q57(QSCALE + bit_depth as i32 - 8);

    let mut log_q_y = log_target_q;
    if !is_intra && bit_depth == 8 {
      log_q_y = log_target_q
        + (log_target_q >> 32) * Q_MODEL_MUL[chroma_sampling as usize]
        + Q_MODEL_ADD[chroma_sampling as usize];
    }

    let quantizer = bexp64(log_q_y + scale);
    let (offset_u, offset_v) = chroma_offset(log_q_y, chroma_sampling);
    let mono = chroma_sampling == ChromaSampling::Cs400;
    let log_q_u = log_q_y + offset_u;
    let log_q_v = log_q_y + offset_v;
    let quantizer_u = bexp64(log_q_u + scale);
    let quantizer_v = bexp64(log_q_v + scale);
    let lambda = (::std::f64::consts::LN_2 / 6.0)
      * ((log_target_q as f64) * Q57_SQUARE_EXP_SCALE).exp();

    let scale = |q| bexp64((log_target_q - q) * 2 + q57(16)) as f64 / 65536.;
    let dist_scale = [scale(log_q_y), scale(log_q_u), scale(log_q_v)];

    let base_q_idx = select_ac_qi(quantizer, bit_depth).max(1);

    // delta_q only gets 6 bits + a sign bit, so it can differ by 63 at most.
    let min_qi = base_q_idx.saturating_sub(63).max(1);
    let max_qi = base_q_idx.saturating_add(63).min(255);
    let clamp_qi = |qi: u8| qi.max(min_qi).min(max_qi);

    QuantizerParameters {
      log_base_q,
      log_target_q,
      // TODO: Allow lossless mode; i.e. qi == 0.
      dc_qi: [
        clamp_qi(select_dc_qi(quantizer, bit_depth)),
        if mono { 0 } else { clamp_qi(select_dc_qi(quantizer_u, bit_depth)) },
        if mono { 0 } else { clamp_qi(select_dc_qi(quantizer_v, bit_depth)) },
      ],
      ac_qi: [
        base_q_idx,
        if mono { 0 } else { clamp_qi(select_ac_qi(quantizer_u, bit_depth)) },
        if mono { 0 } else { clamp_qi(select_ac_qi(quantizer_v, bit_depth)) },
      ],
      lambda,
      dist_scale,
    }
  }
}

// The parameters that are required by twopass_out().
// We need a reference to the enclosing ContextInner to compute these, but
//  twopass_out() cannot take such a reference, since it needs a &mut self
//  reference to do its job, and RCState is contained inside ContextInner.
// In practice we don't modify anything in RCState until after we're finished
//  reading from ContextInner, but Rust's borrow checker does not have a way to
//  express that.
// There's probably a cleaner way to do this, but going with something simple
//  for now, since this is not exposed in the public API.
pub(crate) struct TwoPassOutParams {
  pub pass1_log_base_q: i64,
  done_processing: bool,
}

impl RCState {
  pub fn new(
    frame_width: i32, frame_height: i32, framerate_num: i64,
    framerate_den: i64, target_bitrate: i32, maybe_ac_qi_max: Option<u8>,
    ac_qi_min: u8, max_key_frame_interval: i32,
    maybe_reservoir_frame_delay: Option<i32>,
  ) -> RCState {
    // The default buffer size is set equal to 1.5x the keyframe interval, or 240
    //  frames; whichever is smaller, with a minimum of 12.
    // For user set values, we enforce a minimum of 12.
    // The interval is short enough to allow reaction, but long enough to allow
    //  looking into the next GOP (avoiding the case where the last frames
    //  before an I-frame get starved), in most cases.
    // The 12 frame minimum gives us some chance to distribute bit estimation
    //  errors in the worst case.
    let reservoir_frame_delay = maybe_reservoir_frame_delay
      .unwrap_or_else(|| ((max_key_frame_interval * 3) >> 1).min(240))
      .max(12);
    // TODO: What are the limits on these?
    let npixels = (frame_width as i64) * (frame_height as i64);
    // Insane framerates or frame sizes mean insane bitrates.
    // Let's not get carried away.
    // We also subtract 16 bits from each temporal unit to account for the
    //  temporal delimeter, whose bits are not included in the frame sizes
    //  reported to update_state().
    // TODO: Support constraints imposed by levels.
    let bits_per_tu = clamp(
      (target_bitrate as i64) * framerate_den / framerate_num,
      40,
      0x4000_0000_0000,
    ) - (TEMPORAL_DELIMITER.len() * 8) as i64;
    let reservoir_max = bits_per_tu * (reservoir_frame_delay as i64);
    // Start with a buffer fullness and fullness target of 50%.
    let reservoir_target = (reservoir_max + 1) >> 1;
    // Pick exponents and initial scales for quantizer selection.
    let ibpp = npixels / bits_per_tu;
    // These have been derived by encoding many clips at every quantizer
    // and running a piecewise-linear regression in binary log space.
    let (i_exp, i_log_scale) = if ibpp < 1 {
      (48u8, blog64(36) - q57(QSCALE))
    } else if ibpp < 4 {
      (61u8, blog64(55) - q57(QSCALE))
    } else {
      (77u8, blog64(129) - q57(QSCALE))
    };
    let (p_exp, p_log_scale) = if ibpp < 2 {
      (69u8, blog64(32) - q57(QSCALE))
    } else if ibpp < 139 {
      (104u8, blog64(84) - q57(QSCALE))
    } else {
      (83u8, blog64(19) - q57(QSCALE))
    };
    let (b0_exp, b0_log_scale) = if ibpp < 2 {
      (84u8, blog64(30) - q57(QSCALE))
    } else if ibpp < 92 {
      (120u8, blog64(68) - q57(QSCALE))
    } else {
      (68u8, blog64(4) - q57(QSCALE))
    };
    let (b1_exp, b1_log_scale) = if ibpp < 2 {
      (87u8, blog64(27) - q57(QSCALE))
    } else if ibpp < 126 {
      (139u8, blog64(84) - q57(QSCALE))
    } else {
      (61u8, blog64(1) - q57(QSCALE))
    };

    // TODO: Add support for "golden" P frames.
    RCState {
      target_bitrate,
      reservoir_frame_delay,
      reservoir_frame_delay_is_set: maybe_reservoir_frame_delay.is_some(),
      maybe_ac_qi_max,
      ac_qi_min,
      drop_frames: false,
      cap_overflow: true,
      cap_underflow: false,
      pass1_log_base_q: 0,
      twopass_state: PASS_SINGLE,
      log_npixels: blog64(npixels),
      bits_per_tu,
      reservoir_fullness: reservoir_target,
      reservoir_target,
      reservoir_max,
      log_scale: [i_log_scale, p_log_scale, b0_log_scale, b1_log_scale],
      exp: [i_exp, p_exp, b0_exp, b1_exp],
      scalefilter: [
        IIRBessel2::new(4, q57_to_q24(i_log_scale)),
        IIRBessel2::new(INTER_DELAY_TARGET_MIN, q57_to_q24(p_log_scale)),
        IIRBessel2::new(INTER_DELAY_TARGET_MIN, q57_to_q24(b0_log_scale)),
        IIRBessel2::new(INTER_DELAY_TARGET_MIN, q57_to_q24(b1_log_scale)),
      ],
      // TODO VFR
      nframes: [0; FRAME_NSUBTYPES + 1],
      inter_delay: [INTER_DELAY_TARGET_MIN; FRAME_NSUBTYPES - 1],
      inter_delay_target: reservoir_frame_delay >> 1,
      rate_bias: 0,
      nencoded_frames: 0,
      nsef_frames: 0,
      pass1_buffer: [0; TWOPASS_HEADER_SZ],
      pass1_data_retrieved: true,
      pass1_summary_retrieved: false,
      pass2_data_ready: false,
      prev_metrics: RCFrameMetrics::new(),
      cur_metrics: RCFrameMetrics::new(),
      frame_metrics: Vec::new(),
      nframe_metrics: 0,
      frame_metrics_head: 0,
      ntus: 0,
      ntus_total: 0,
      ntus_left: 0,
      nframes_total: [0; FRAME_NSUBTYPES + 1],
      nframes_total_total: 0,
      nframes_left: [0; FRAME_NSUBTYPES + 1],
      scale_sum: [0; FRAME_NSUBTYPES],
      scale_window_ntus: 0,
      scale_window_nframes: [0; FRAME_NSUBTYPES + 1],
      scale_window_sum: [0; FRAME_NSUBTYPES],
      des: RCDeserialize::default(),
    }
  }

  pub(crate) fn select_first_pass_qi(
    &self, bit_depth: usize, fti: usize, chroma_sampling: ChromaSampling,
  ) -> QuantizerParameters {
    // Adjust the quantizer for the frame type, result is Q57:
    let log_q = ((self.pass1_log_base_q + (1i64 << 11)) >> 12)
      * (MQP_Q12[fti] as i64)
      + DQP_Q57[fti];
    QuantizerParameters::new_from_log_q(
      self.pass1_log_base_q,
      log_q,
      bit_depth,
      chroma_sampling,
      fti == 0,
    )
  }

  // TODO: Separate quantizers for Cb and Cr.
  pub(crate) fn select_qi<T: Pixel>(
    &self, ctx: &ContextInner<T>, output_frameno: u64, fti: usize,
    maybe_prev_log_base_q: Option<i64>,
  ) -> QuantizerParameters {
    // Is rate control active?
    if self.target_bitrate <= 0 {
      // Rate control is not active.
      // Derive quantizer directly from frame type.
      let bit_depth = ctx.config.bit_depth;
      let chroma_sampling = ctx.config.chroma_sampling;
      let (log_base_q, log_q) =
        Self::calc_flat_quantizer(ctx.config.quantizer as u8, bit_depth, fti);
      QuantizerParameters::new_from_log_q(
        log_base_q,
        log_q,
        bit_depth,
        chroma_sampling,
        fti == 0,
      )
    } else {
      let mut nframes: [i32; FRAME_NSUBTYPES + 1] = [0; FRAME_NSUBTYPES + 1];
      let mut log_scale: [i64; FRAME_NSUBTYPES] = self.log_scale;
      let mut reservoir_tus = self.reservoir_frame_delay.min(self.ntus_left);
      let mut reservoir_frames = 0;
      let mut log_cur_scale = (self.scalefilter[fti].y[0] as i64) << 33;
      match self.twopass_state {
        // First pass of 2-pass mode: use a fixed base quantizer.
        PASS_1 => {
          return self.select_first_pass_qi(
            ctx.config.bit_depth,
            fti,
            ctx.config.chroma_sampling,
          );
        }
        // Second pass of 2-pass mode: we know exactly how much of each frame
        //  type there is in the current buffer window, and have estimates for
        //  the scales.
        PASS_2 | PASS_2_PLUS_1 => {
          let mut scale_window_sum: [i64; FRAME_NSUBTYPES] =
            self.scale_window_sum;
          let mut scale_window_nframes: [i32; FRAME_NSUBTYPES + 1] =
            self.scale_window_nframes;
          // Intentionally exclude Show Existing Frame frames from this.
          for ftj in 0..FRAME_NSUBTYPES {
            reservoir_frames += scale_window_nframes[ftj];
          }
          // If we're approaching the end of the file, add some slack to keep
          //  us from slamming into a rail.
          // Our rate accuracy goes down, but it keeps the result sensible.
          // We position the target where the first forced keyframe beyond the
          //  end of the file would be (for consistency with 1-pass mode).
          // TODO: let mut buf_pad = self.reservoir_frame_delay.min(...);
          // if buf_delay < buf_pad {
          //   buf_pad -= buf_delay;
          // }
          // else ...
          // Otherwise, search for the last keyframe in the buffer window and
          //  target that.
          // Currently we only do this when using a finite buffer.
          // We could save the position of the last keyframe in the stream in
          //  the summary data and do it with a whole-file buffer as well, but
          //  it isn't likely to make a difference.
          if !self.frame_metrics.is_empty() {
            let mut fm_tail = self.frame_metrics_head + self.nframe_metrics;
            if fm_tail >= self.frame_metrics.len() {
              fm_tail -= self.frame_metrics.len();
            }
            let mut fmi = fm_tail;
            loop {
              if fmi == 0 {
                fmi += self.frame_metrics.len();
              }
              fmi -= 1;
              // Stop before we remove the first frame.
              if fmi == self.frame_metrics_head {
                break;
              }
              // If we find a keyframe, remove it and everything past it.
              if self.frame_metrics[fmi].fti == FRAME_SUBTYPE_I {
                while fmi != fm_tail {
                  let m = &self.frame_metrics[fmi];
                  let ftj = m.fti;
                  scale_window_nframes[ftj] -= 1;
                  if ftj < FRAME_NSUBTYPES {
                    scale_window_sum[ftj] -= bexp_q24(m.log_scale_q24);
                    reservoir_frames -= 1;
                  }
                  if m.show_frame {
                    reservoir_tus -= 1;
                  }
                  fmi += 1;
                  if fmi >= self.frame_metrics.len() {
                    fmi = 0;
                  }
                }
                // And stop scanning backwards.
                break;
              }
            }
          }
          nframes = scale_window_nframes;
          // If we're not using the same frame type as in pass 1 (because
          //  someone changed some encoding parameters), remove that scale
          //  estimate.
          // We'll add a replacement for the correct frame type below.
          if self.cur_metrics.fti != fti {
            scale_window_nframes[self.cur_metrics.fti] -= 1;
            if self.cur_metrics.fti != FRAME_SUBTYPE_SEF {
              scale_window_sum[self.cur_metrics.fti] -=
                bexp_q24(self.cur_metrics.log_scale_q24);
            }
          } else {
            log_cur_scale = (self.cur_metrics.log_scale_q24 as i64) << 33;
          }
          // If we're approaching the end of the file, add some slack to keep
          //  us from slamming into a rail.
          // Our rate accuracy goes down, but it keeps the result sensible.
          // We position the target where the first forced keyframe beyond the
          //  end of the file would be (for consistency with 1-pass mode).
          if reservoir_tus >= self.ntus_left
            && self.ntus_total as u64
              > ctx.gop_input_frameno_start[&output_frameno]
          {
            let nfinal_gop_tus = self.ntus_total
              - (ctx.gop_input_frameno_start[&output_frameno] as i32);
            if ctx.config.max_key_frame_interval as i32 > nfinal_gop_tus {
              let reservoir_pad = (ctx.config.max_key_frame_interval as i32
                - nfinal_gop_tus)
                .min(self.reservoir_frame_delay - reservoir_tus);
              let (guessed_reservoir_frames, guessed_reservoir_tus) = ctx
                .guess_frame_subtypes(
                  &mut nframes,
                  reservoir_tus + reservoir_pad,
                );
              reservoir_frames = guessed_reservoir_frames;
              reservoir_tus = guessed_reservoir_tus;
            }
          }
          // Blend in the low-pass filtered scale according to how many
          //  frames of each type we need to add compared to the actual sums in
          //  our window.
          for ftj in 0..FRAME_NSUBTYPES {
            let scale = scale_window_sum[ftj]
              + bexp_q24(self.scalefilter[ftj].y[0])
                * (nframes[ftj] - scale_window_nframes[ftj]) as i64;
            log_scale[ftj] = if nframes[ftj] > 0 {
              blog64(scale) - blog64(nframes[ftj] as i64) - q57(24)
            } else {
              -self.log_npixels
            };
          }
        }
        // Single pass.
        _ => {
          // Figure out how to re-distribute bits so that we hit our fullness
          //  target before the last keyframe in our current buffer window
          //  (after the current frame), or the end of the buffer window,
          //  whichever comes first.
          // Count the various types and classes of frames.
          let (guessed_reservoir_frames, guessed_reservoir_tus) =
            ctx.guess_frame_subtypes(&mut nframes, self.reservoir_frame_delay);
          reservoir_frames = guessed_reservoir_frames;
          reservoir_tus = guessed_reservoir_tus;
          // TODO: Scale for VFR.
        }
      }
      // If we've been missing our target, add a penalty term.
      let rate_bias = (self.rate_bias / (self.nencoded_frames as i64 + 100))
        * (reservoir_frames as i64);
      // rate_total is the total bits available over the next
      //  reservoir_tus TUs.
      let rate_total = self.reservoir_fullness - self.reservoir_target
        + rate_bias
        + (reservoir_tus as i64) * self.bits_per_tu;
      // Find a target quantizer that meets our rate target for the
      //  specific mix of frame types we'll have over the next
      //  reservoir_frame frames.
      // We model the rate<->quantizer relationship as
      //  rate = scale*(quantizer**-exp)
      // In this case, we have our desired rate, an exponent selected in
      //  setup, and a scale that's been measured over our frame history,
      //  so we're solving for the quantizer.
      // Exponentiation with arbitrary exponents is expensive, so we work
      //  in the binary log domain (binary exp and log aren't too bad):
      //  rate = exp2(log2(scale) - log2(quantizer)*exp)
      // There's no easy closed form solution, so we bisection searh for it.
      let bit_depth = ctx.config.bit_depth;
      let chroma_sampling = ctx.config.chroma_sampling;
      // TODO: Proper handling of lossless.
      let mut log_qlo = blog64(ac_q(self.ac_qi_min, 0, bit_depth) as i64)
        - q57(QSCALE + bit_depth as i32 - 8);
      // The AC quantizer tables map to values larger than the DC quantizer
      //  tables, so we use that as the upper bound to make sure we can use
      //  the full table if needed.
      let mut log_qhi =
        blog64(ac_q(self.maybe_ac_qi_max.unwrap_or(255), 0, bit_depth) as i64)
          - q57(QSCALE + bit_depth as i32 - 8);
      let mut log_base_q = (log_qlo + log_qhi) >> 1;
      while log_qlo < log_qhi {
        // Count bits contributed by each frame type using the model.
        let mut bits = 0i64;
        for ftj in 0..FRAME_NSUBTYPES {
          // Modulate base quantizer by frame type.
          let log_q = ((log_base_q + (1i64 << 11)) >> 12)
            * (MQP_Q12[ftj] as i64)
            + DQP_Q57[ftj];
          // All the fields here are Q57 except for the exponent, which is
          //  Q6.
          bits += (nframes[ftj] as i64)
            * bexp64(
              log_scale[ftj] + self.log_npixels
                - ((log_q + 32) >> 6) * (self.exp[ftj] as i64),
            );
        }
        // The number of bits for Show Existing Frame frames is constant.
        bits += (nframes[FRAME_SUBTYPE_SEF] as i64) * SEF_BITS;
        let diff = bits - rate_total;
        if diff > 0 {
          log_qlo = log_base_q + 1;
        } else if diff < 0 {
          log_qhi = log_base_q - 1;
        } else {
          break;
        }
        log_base_q = (log_qlo + log_qhi) >> 1;
      }
      // If this was not one of the initial frames, limit the change in
      //  base quantizer to within [0.8*Q, 1.2*Q] where Q is the previous
      //  frame's base quantizer.
      if let Some(prev_log_base_q) = maybe_prev_log_base_q {
        log_base_q = clamp(
          log_base_q,
          prev_log_base_q - 0xA4_D3C2_5E68_DC58,
          prev_log_base_q + 0xA4_D3C2_5E68_DC58,
        );
      }
      // Modulate base quantizer by frame type.
      let mut log_q = ((log_base_q + (1i64 << 11)) >> 12)
        * (MQP_Q12[fti] as i64)
        + DQP_Q57[fti];
      // The above allocation looks only at the total rate we'll accumulate
      //  in the next reservoir_frame_delay frames.
      // However, we could overflow the bit reservoir on the very next
      //  frame.
      // Check for that here if we're not using a soft target.
      if self.cap_overflow {
        // Allow 3% of the buffer for prediction error.
        // This should be plenty, and we don't mind if we go a bit over.
        // We only want to keep these bits from being completely wasted.
        let margin = (self.reservoir_max + 31) >> 5;
        // We want to use at least this many bits next frame.
        let soft_limit = self.reservoir_fullness + self.bits_per_tu
          - (self.reservoir_max - margin);
        if soft_limit > 0 {
          let log_soft_limit = blog64(soft_limit);
          // If we're predicting we won't use that many bits...
          // TODO: When using frame re-ordering, we should include the rate
          //  for all of the frames in the current TU.
          // When there is more than one frame, there will be no direct
          //  solution for the required adjustment, however.
          let log_scale_pixels = log_cur_scale + self.log_npixels;
          let exp = self.exp[fti] as i64;
          let mut log_q_exp = ((log_q + 32) >> 6) * exp;
          if log_scale_pixels - log_q_exp < log_soft_limit {
            // Scale the adjustment based on how far into the margin we are.
            log_q_exp += ((log_scale_pixels - log_soft_limit - log_q_exp)
              >> 32)
              * ((margin.min(soft_limit) << 32) / margin);
            log_q = ((log_q_exp + (exp >> 1)) / exp) << 6;
          }
        }
      }
      // We just checked we don't overflow the reservoir next frame, now
      //  check we don't underflow and bust the budget (when not using a
      //  soft target).
      if self.maybe_ac_qi_max.is_none() {
        // Compute the maximum number of bits we can use in the next frame.
        // Allow 50% of the rate for a single frame for prediction error.
        // This may not be enough for keyframes or sudden changes in
        //  complexity.
        let log_hard_limit =
          blog64(self.reservoir_fullness + (self.bits_per_tu >> 1));
        // If we're predicting we'll use more than this...
        // TODO: When using frame re-ordering, we should include the rate
        //  for all of the frames in the current TU.
        // When there is more than one frame, there will be no direct
        //  solution for the required adjustment, however.
        let log_scale_pixels = log_cur_scale + self.log_npixels;
        let exp = self.exp[fti] as i64;
        let mut log_q_exp = ((log_q + 32) >> 6) * exp;
        if log_scale_pixels - log_q_exp > log_hard_limit {
          // Force the target to hit our limit exactly.
          log_q_exp = log_scale_pixels - log_hard_limit;
          log_q = ((log_q_exp + (exp >> 1)) / exp) << 6;
          // If that target is unreasonable, oh well; we'll have to drop.
        }
      }

      if let Some(qi_max) = self.maybe_ac_qi_max {
        let (max_log_base_q, max_log_q) =
          Self::calc_flat_quantizer(qi_max, ctx.config.bit_depth, fti);
        log_base_q = cmp::min(log_base_q, max_log_base_q);
        log_q = cmp::min(log_q, max_log_q);
      }
      if self.ac_qi_min > 0 {
        let (min_log_base_q, min_log_q) =
          Self::calc_flat_quantizer(self.ac_qi_min, ctx.config.bit_depth, fti);
        log_base_q = cmp::max(log_base_q, min_log_base_q);
        log_q = cmp::max(log_q, min_log_q);
      }
      QuantizerParameters::new_from_log_q(
        log_base_q,
        log_q,
        bit_depth,
        chroma_sampling,
        fti == 0,
      )
    }
  }

  // Computes a quantizer directly from the frame type and base quantizer index,
  // without consideration for rate control.
  fn calc_flat_quantizer(
    base_qi: u8, bit_depth: usize, fti: usize,
  ) -> (i64, i64) {
    // TODO: Rename "quantizer" something that indicates it is a quantizer
    //  index, and move it somewhere more sensible (or choose a better way to
    //  parameterize a "quality" configuration parameter).

    // We use the AC quantizer as the source quantizer since its quantizer
    //  tables have unique entries, while the DC tables do not.
    let ac_quantizer = ac_q(base_qi as u8, 0, bit_depth) as i64;
    // Pick the nearest DC entry since an exact match may be unavailable.
    let dc_qi = select_dc_qi(ac_quantizer, bit_depth);
    let dc_quantizer = dc_q(dc_qi as u8, 0, bit_depth) as i64;
    // Get the log quantizers as Q57.
    let log_ac_q = blog64(ac_quantizer) - q57(QSCALE + bit_depth as i32 - 8);
    let log_dc_q = blog64(dc_quantizer) - q57(QSCALE + bit_depth as i32 - 8);
    // Target the midpoint of the chosen entries.
    let log_base_q = (log_ac_q + log_dc_q + 1) >> 1;
    // Adjust the quantizer for the frame type, result is Q57:
    let log_q = ((log_base_q + (1i64 << 11)) >> 12) * (MQP_Q12[fti] as i64)
      + DQP_Q57[fti];
    (log_base_q, log_q)
  }

  pub fn update_state(
    &mut self, bits: i64, fti: usize, show_frame: bool, log_target_q: i64,
    trial: bool, droppable: bool,
  ) -> bool {
    if trial {
      assert!(self.needs_trial_encode(fti));
      assert!(bits > 0);
    }
    let mut dropped = false;
    // Update rate control only if rate control is active.
    if self.target_bitrate > 0 {
      let mut estimated_bits = 0;
      let mut bits = bits;
      let mut droppable = droppable;
      let mut log_scale = q57(-64);
      // Drop frames is also disabled for now in the case of infinite-buffer
      //  two-pass mode.
      if !self.drop_frames
        || fti == FRAME_SUBTYPE_SEF
        || (self.twopass_state == PASS_2
          || self.twopass_state == PASS_2_PLUS_1)
          && !self.frame_metrics.is_empty()
      {
        droppable = false;
      }
      if fti == FRAME_SUBTYPE_SEF {
        debug_assert!(bits == SEF_BITS);
        debug_assert!(show_frame);
        // Please don't make trial encodes of a SEF.
        debug_assert!(!trial);
        estimated_bits = SEF_BITS;
        self.nsef_frames += 1;
      } else {
        let log_q_exp = ((log_target_q + 32) >> 6) * (self.exp[fti] as i64);
        let prev_log_scale = self.log_scale[fti];
        if bits <= 0 {
          // We didn't code any blocks in this frame.
          bits = 0;
          dropped = true;
        // TODO: Adjust VFR rate based on drop count.
        } else {
          // Compute the estimated scale factor for this frame type.
          let log_bits = blog64(bits);
          log_scale = (log_bits - self.log_npixels + log_q_exp).min(q57(16));
          estimated_bits =
            bexp64(prev_log_scale + self.log_npixels - log_q_exp);
          if !trial {
            self.nencoded_frames += 1;
          }
        }
      }
      let log_scale_q24 = q57_to_q24(log_scale);
      // Special two-pass processing.
      if self.twopass_state == PASS_2 || self.twopass_state == PASS_2_PLUS_1 {
        // Pass 2 mode:
        if !trial {
          // Move the current metrics back one frame.
          self.prev_metrics = self.cur_metrics;
          // Back out the last frame's statistics from the sliding window.
          let ftj = self.prev_metrics.fti;
          self.nframes_left[ftj] -= 1;
          self.scale_window_nframes[ftj] -= 1;
          if ftj < FRAME_NSUBTYPES {
            self.scale_window_sum[ftj] -=
              bexp_q24(self.prev_metrics.log_scale_q24);
          }
          if self.prev_metrics.show_frame {
            self.ntus_left -= 1;
            self.scale_window_ntus -= 1;
          }
          // Free the corresponding entry in the circular buffer.
          if !self.frame_metrics.is_empty() {
            self.nframe_metrics -= 1;
            self.frame_metrics_head += 1;
            if self.frame_metrics_head >= self.frame_metrics.len() {
              self.frame_metrics_head = 0;
            }
          }
          // Mark us ready for the next 2-pass packet.
          self.pass2_data_ready = false;
          // Update state, so the user doesn't have to keep calling
          //  twopass_in() after they've fed in all the data when we're using
          //  a finite buffer.
          self.twopass_in(None).unwrap_or(0);
        }
      }
      if self.twopass_state == PASS_1 || self.twopass_state == PASS_2_PLUS_1 {
        // Pass 1 mode: save the metrics for this frame.
        self.prev_metrics.log_scale_q24 = log_scale_q24;
        self.prev_metrics.fti = fti;
        self.prev_metrics.show_frame = show_frame;
        self.pass1_data_retrieved = false;
      }
      // Common to all passes:
      if fti != FRAME_SUBTYPE_SEF && bits > 0 {
        // If this is the first example of the given frame type we've seen,
        //  we immediately replace the default scale factor guess with the
        //  estimate we just computed using the first frame.
        if trial || self.nframes[fti] <= 0 {
          let f = &mut self.scalefilter[fti];
          let x = log_scale_q24;
          f.x[0] = x;
          f.x[1] = x;
          f.y[0] = x;
          f.y[1] = x;
          self.log_scale[fti] = log_scale;
        // TODO: Duplicate regular P frame state for first golden P frame.
        } else {
          // Lengthen the time constant for the inter filters as we collect
          //  more frame statistics, until we reach our target.
          if fti > 0
            && self.inter_delay[fti - 1] < self.inter_delay_target
            && self.nframes[fti] >= self.inter_delay[fti - 1]
          {
            self.inter_delay[fti - 1] += 1;
            self.scalefilter[fti].reinit(self.inter_delay[fti - 1]);
          }
          // Update the low-pass scale filter for this frame type regardless
          //  of whether or not we will ultimately drop this frame.
          self.log_scale[fti] =
            q24_to_q57(self.scalefilter[fti].update(log_scale_q24));
        }
        // If this frame busts our budget, it must be dropped.
        if droppable && self.reservoir_fullness + self.bits_per_tu < bits {
          // TODO: Adjust VFR rate based on drop count.
          bits = 0;
          dropped = true;
        } else {
          // TODO: Update a low-pass filter to estimate the "real" frame rate
          //  taking timestamps and drops into account.
          // This is only done if the frame is coded, as it needs the final
          //  count of dropped frames.
        }
      }
      if !trial {
        // Increment the frame count for filter adaptation purposes.
        if !trial && self.nframes[fti] < ::std::i32::MAX {
          self.nframes[fti] += 1;
        }
        self.reservoir_fullness -= bits;
        if show_frame {
          self.reservoir_fullness += self.bits_per_tu;
          // TODO: Properly account for temporal delimeter bits.
        }
        // If we're too quick filling the buffer and overflow is capped, that
        //  rate is lost forever.
        if self.cap_overflow {
          self.reservoir_fullness =
            self.reservoir_fullness.min(self.reservoir_max);
        }
        // If we're too quick draining the buffer and underflow is capped,
        //  don't try to make up that rate later.
        if self.cap_underflow {
          self.reservoir_fullness = self.reservoir_fullness.max(0);
        }
        // Adjust the bias for the real bits we've used.
        self.rate_bias += estimated_bits - bits;
      }
    }
    dropped
  }

  pub fn needs_trial_encode(&self, fti: usize) -> bool {
    self.target_bitrate > 0 && self.nframes[fti] == 0
  }

  pub(crate) fn ready(&self) -> bool {
    match self.twopass_state {
      PASS_SINGLE => true,
      PASS_1 => self.pass1_data_retrieved,
      PASS_2 => self.pass2_data_ready,
      _ => self.pass1_data_retrieved && self.pass2_data_ready,
    }
  }

  fn buffer_val(&mut self, val: i64, bytes: usize, cur_pos: usize) -> usize {
    let mut val = val;
    let mut bytes = bytes;
    let mut cur_pos = cur_pos;
    while bytes > 0 {
      bytes -= 1;
      self.pass1_buffer[cur_pos] = val as u8;
      cur_pos += 1;
      val >>= 8;
    }
    cur_pos
  }

  pub(crate) fn get_twopass_out_params<T: Pixel>(
    &self, ctx: &ContextInner<T>, output_frameno: u64,
  ) -> TwoPassOutParams {
    let mut pass1_log_base_q = 0;
    let mut done_processing = false;
    if !self.pass1_data_retrieved {
      if self.twopass_state == PASS_SINGLE {
        pass1_log_base_q = self
          .select_qi(ctx, output_frameno, FRAME_SUBTYPE_I, None)
          .log_base_q;
      }
    } else {
      done_processing = ctx.done_processing();
    }
    TwoPassOutParams { pass1_log_base_q, done_processing }
  }

  // Initialize the first pass and emit a placeholder summary
  pub(crate) fn init_first_pass(&mut self, pass1_log_base_q: i64) {
    if self.twopass_state == PASS_SINGLE {
      // Pick first-pass qi for scale calculations.
      self.pass1_log_base_q = pass1_log_base_q;
    } else {
      debug_assert!(self.twopass_state == PASS_2);
    }
    self.twopass_state += PASS_1;
  }

  // Prepare a placeholder summary
  fn emit_placeholder_summary(&mut self) -> &[u8] {
    // Fill in dummy summary values.
    let mut cur_pos = 0;
    cur_pos = self.buffer_val(TWOPASS_MAGIC as i64, 4, cur_pos);
    cur_pos = self.buffer_val(TWOPASS_VERSION as i64, 4, cur_pos);
    cur_pos = self.buffer_val(0, TWOPASS_HEADER_SZ - 8, cur_pos);
    debug_assert!(cur_pos == TWOPASS_HEADER_SZ);
    self.pass1_data_retrieved = true;
    &self.pass1_buffer[..cur_pos]
  }

  // Frame-specific pass data
  pub(crate) fn emit_frame_data(&mut self) -> Option<&[u8]> {
    let mut cur_pos = 0;
    let fti = self.prev_metrics.fti;
    if fti < FRAME_NSUBTYPES {
      self.scale_sum[fti] += bexp_q24(self.prev_metrics.log_scale_q24);
    }
    if self.prev_metrics.show_frame {
      self.ntus += 1;
    }
    // If we have encoded too many frames, prevent us from reaching the
    //  ready state required to encode more.
    if self.nencoded_frames + self.nsef_frames >= std::i32::MAX as i64 {
      None?
    }
    cur_pos = self.buffer_val(
      (self.prev_metrics.show_frame as i64) << 31
        | self.prev_metrics.fti as i64,
      4,
      cur_pos,
    );
    cur_pos =
      self.buffer_val(self.prev_metrics.log_scale_q24 as i64, 4, cur_pos);
    debug_assert!(cur_pos == TWOPASS_PACKET_SZ);
    self.pass1_data_retrieved = true;
    Some(&self.pass1_buffer[..cur_pos])
  }

  // Summary of the whole encoding process.
  pub(crate) fn emit_summary(&mut self) -> &[u8] {
    let mut cur_pos = 0;
    cur_pos = self.buffer_val(TWOPASS_MAGIC as i64, 4, cur_pos);
    cur_pos = self.buffer_val(TWOPASS_VERSION as i64, 4, cur_pos);
    cur_pos = self.buffer_val(self.ntus as i64, 4, cur_pos);
    for fti in 0..=FRAME_NSUBTYPES {
      cur_pos = self.buffer_val(self.nframes[fti] as i64, 4, cur_pos);
    }
    for fti in 0..FRAME_NSUBTYPES {
      cur_pos = self.buffer_val(self.exp[fti] as i64, 1, cur_pos);
    }
    for fti in 0..FRAME_NSUBTYPES {
      cur_pos = self.buffer_val(self.scale_sum[fti], 8, cur_pos);
    }
    debug_assert!(cur_pos == TWOPASS_HEADER_SZ);
    self.pass1_summary_retrieved = true;
    &self.pass1_buffer[..cur_pos]
  }

  // Initialize the first pass, emit either summary or frame-specific data
  // depending on the previous call
  pub(crate) fn twopass_out(
    &mut self, params: TwoPassOutParams,
  ) -> Option<&[u8]> {
    if !self.pass1_data_retrieved {
      if self.twopass_state != PASS_1 && self.twopass_state != PASS_2_PLUS_1 {
        self.init_first_pass(params.pass1_log_base_q);
        Some(self.emit_placeholder_summary())
      } else {
        self.emit_frame_data()
      }
    } else if params.done_processing && !self.pass1_summary_retrieved {
      Some(self.emit_summary())
    } else {
      // The data for this frame has already been retrieved.
      None
    }
  }

  // Initialize the rate control for second pass encoding
  pub(crate) fn init_second_pass(&mut self) {
    if self.twopass_state == PASS_SINGLE || self.twopass_state == PASS_1 {
      // Initialize the second pass.
      self.twopass_state += PASS_2;
      // If the user requested a finite buffer, reserve the space required for
      //  it.
      if self.reservoir_frame_delay_is_set {
        debug_assert!(self.reservoir_frame_delay > 0);
        // reservoir_frame_delay counts in TUs, but RCFrameMetrics are stored
        //  per frame (including Show Existing Frame frames).
        // When re-ordering, we will have more frames than TUs.
        // How many more?
        // That depends on the re-ordering scheme used.
        // Doubling the number of TUs and adding a fixed latency equal to the
        //  maximum number of reference frames we can store should be
        //  sufficient for any reasonable scheme, and keeps this code from
        //  depending too closely on the details of the scheme currently used
        //  by rav1e.
        let nmetrics = (self.reservoir_frame_delay as usize) * 2 + 8;
        self.frame_metrics.reserve_exact(nmetrics);
        self.frame_metrics.resize(nmetrics, RCFrameMetrics::new());
      }
    }
  }

  pub(crate) fn setup_second_pass(&mut self, s: &RCSummary) {
    self.ntus_total = s.ntus;
    self.ntus_left = s.ntus;
    self.nframes_total = s.nframes;
    self.nframes_left = s.nframes;
    self.nframes_total_total = s.nframes.iter().sum();
    if self.frame_metrics.is_empty() {
      self.reservoir_frame_delay = s.ntus;
      self.scale_window_nframes = self.nframes_total;
      self.scale_window_sum = s.scale_sum;
      self.reservoir_max =
        self.bits_per_tu * (self.reservoir_frame_delay as i64);
      self.reservoir_target = (self.reservoir_max + 1) >> 1;
      self.reservoir_fullness = self.reservoir_target;
    } else {
      self.reservoir_frame_delay = self.reservoir_frame_delay.min(s.ntus);
    }
    self.exp = s.exp;
  }

  // Parse the rate control summary
  //
  // It returns the amount of data consumed in the process or
  // an empty error on parsing failure.
  fn twopass_parse_summary(&mut self, buf: &[u8]) -> Result<usize, String> {
    let consumed = self.des.buffer_fill(buf, 0, TWOPASS_HEADER_SZ);
    if self.des.pass2_buffer_fill >= TWOPASS_HEADER_SZ {
      self.des.pass2_buffer_pos = 0;

      let s = self.des.parse_summary()?;

      self.setup_second_pass(&s);

      // Got a valid header.
      // Set up pass 2.
      // Clear the header data from the buffer to make room for the
      //  packet data.
      self.des.pass2_buffer_fill = 0;
    }

    Ok(consumed)
  }

  // Return the size of the first buffer twopass_in expects
  //
  // It is the summary size (constant) + the number of frame data packets
  // (variable depending on the configuration) it needs to starts encoding.
  pub(crate) fn twopass_first_packet_size(&self) -> usize {
    let frames_needed = if !self.frame_metrics.is_empty() {
      // If we're not using whole-file buffering, we need at least one
      //  frame per buffer slot.
      self.reservoir_frame_delay as usize
    } else {
      // Otherwise we need just one.
      1
    };

    TWOPASS_HEADER_SZ + frames_needed * TWOPASS_PACKET_SZ
  }

  // Return the number of frame data packets to be parsed before
  // the encoding process can continue.
  pub(crate) fn twopass_in_frames_needed(&self) -> i32 {
    if self.target_bitrate <= 0 {
      return 0;
    }
    if self.frame_metrics.is_empty() {
      return if self.pass2_data_ready { 0 } else { 1 };
    }
    let mut cur_scale_window_nframes = 0;
    let mut cur_nframes_left = 0;
    for fti in 0..=FRAME_NSUBTYPES {
      cur_scale_window_nframes += self.scale_window_nframes[fti];
      cur_nframes_left += self.nframes_left[fti];
    }

    (self.reservoir_frame_delay - self.scale_window_ntus)
      .max(0)
      .min(cur_nframes_left - cur_scale_window_nframes)
  }

  pub(crate) fn parse_frame_data_packet(
    &mut self, buf: &[u8],
  ) -> Result<(), String> {
    if buf.len() != TWOPASS_PACKET_SZ {
      return Err("Incorrect buffer size".to_string());
    }

    self.des.buffer_fill(buf, 0, TWOPASS_PACKET_SZ);
    self.des.pass2_buffer_pos = 0;
    let m = self.des.parse_metrics()?;
    self.des.pass2_buffer_fill = 0;

    if self.frame_metrics.is_empty() {
      // We're using a whole-file buffer.
      self.cur_metrics = m;
      self.pass2_data_ready = true;
    } else {
      // Safety check
      let frames_needed = self.twopass_in_frames_needed();

      if frames_needed > 0 {
        if self.nframe_metrics >= self.frame_metrics.len() {
          return Err(
            "Read too many frames without finding enough TUs".to_string(),
          );
        }

        let mut fmi = self.frame_metrics_head + self.nframe_metrics;
        if fmi >= self.frame_metrics.len() {
          fmi -= self.frame_metrics.len();
        }
        self.nframe_metrics += 1;
        self.frame_metrics[fmi] = m;
        // And accumulate the statistics over the window.
        self.scale_window_nframes[m.fti] += 1;
        if m.fti < FRAME_NSUBTYPES {
          self.scale_window_sum[m.fti] += bexp_q24(m.log_scale_q24);
        }
        if m.show_frame {
          self.scale_window_ntus += 1;
        }
        if frames_needed == 1 {
          self.pass2_data_ready = true;
          self.cur_metrics = self.frame_metrics[self.frame_metrics_head];
        }
      } else {
        return Err("No frames needed".to_string());
      }
    }

    Ok(())
  }

  // Parse the rate control per-frame data
  //
  // If no buffer is passed return the amount of data it expects
  // to consume next.
  //
  // If a properly sized buffer is passed it returns the amount of data
  // consumed in the process or an empty error on parsing failure.
  fn twopass_parse_frame_data(
    &mut self, maybe_buf: Option<&[u8]>, mut consumed: usize,
  ) -> Result<usize, String> {
    {
      if self.frame_metrics.is_empty() {
        // We're using a whole-file buffer.
        if let Some(buf) = maybe_buf {
          consumed = self.des.buffer_fill(buf, consumed, TWOPASS_PACKET_SZ);
          if self.des.pass2_buffer_fill >= TWOPASS_PACKET_SZ {
            self.des.pass2_buffer_pos = 0;
            // Read metrics for the next frame.
            self.cur_metrics = self.des.parse_metrics()?;
            // Clear the buffer for the next frame.
            self.des.pass2_buffer_fill = 0;
            self.pass2_data_ready = true;
          }
        } else {
          return Ok(TWOPASS_PACKET_SZ - self.des.pass2_buffer_fill);
        }
      } else {
        // We're using a finite buffer.
        let mut cur_scale_window_nframes = 0;
        let mut cur_nframes_left = 0;

        for fti in 0..=FRAME_NSUBTYPES {
          cur_scale_window_nframes += self.scale_window_nframes[fti];
          cur_nframes_left += self.nframes_left[fti];
        }

        let mut frames_needed = self.twopass_in_frames_needed();
        while frames_needed > 0 {
          if let Some(buf) = maybe_buf {
            consumed = self.des.buffer_fill(buf, consumed, TWOPASS_PACKET_SZ);
            if self.des.pass2_buffer_fill >= TWOPASS_PACKET_SZ {
              self.des.pass2_buffer_pos = 0;
              // Read the metrics for the next frame.
              let m = self.des.parse_metrics()?;
              // Add them to the circular buffer.
              if self.nframe_metrics >= self.frame_metrics.len() {
                return Err(
                  "Read too many frames without finding enough TUs"
                    .to_string(),
                );
              }
              let mut fmi = self.frame_metrics_head + self.nframe_metrics;
              if fmi >= self.frame_metrics.len() {
                fmi -= self.frame_metrics.len();
              }
              self.nframe_metrics += 1;
              self.frame_metrics[fmi] = m;
              // And accumulate the statistics over the window.
              self.scale_window_nframes[m.fti] += 1;
              cur_scale_window_nframes += 1;
              if m.fti < FRAME_NSUBTYPES {
                self.scale_window_sum[m.fti] += bexp_q24(m.log_scale_q24);
              }
              if m.show_frame {
                self.scale_window_ntus += 1;
              }
              frames_needed = (self.reservoir_frame_delay
                - self.scale_window_ntus)
                .max(0)
                .min(cur_nframes_left - cur_scale_window_nframes);
              // Clear the buffer for the next frame.
              self.des.pass2_buffer_fill = 0;
            } else {
              // Go back for more data.
              break;
            }
          } else {
            return Ok(
              TWOPASS_PACKET_SZ * (frames_needed as usize)
                - self.des.pass2_buffer_fill,
            );
          }
        }
        // If we've got all the frames we need, fill in the current metrics.
        // We're ready to go.
        if frames_needed <= 0 {
          self.cur_metrics = self.frame_metrics[self.frame_metrics_head];
          // Mark us ready for the next frame.
          self.pass2_data_ready = true;
        }
      }
    }

    Ok(consumed)
  }

  // If called without a buffer it will return the size of the next
  // buffer it expects.
  //
  // If called with a buffer it will consume it fully.
  // It returns Ok(0) if the buffer had been parsed or Err(())
  // if the buffer hadn't been enough or other errors happened.
  pub(crate) fn twopass_in(
    &mut self, maybe_buf: Option<&[u8]>,
  ) -> Result<usize, String> {
    let mut consumed = 0;
    self.init_second_pass();
    // If we haven't got a valid summary header yet, try to parse one.
    if self.nframes_total[FRAME_SUBTYPE_I] == 0 {
      self.pass2_data_ready = false;
      if let Some(buf) = maybe_buf {
        consumed = self.twopass_parse_summary(buf)?
      } else {
        return Ok(self.twopass_first_packet_size());
      }
    }
    if self.nframes_total[FRAME_SUBTYPE_I] > 0 {
      if self.nencoded_frames + self.nsef_frames
        >= self.nframes_total_total as i64
      {
        // We don't want any more data after the last frame, and we don't want
        //  to allow any more frames to be encoded.
        self.pass2_data_ready = false;
      } else if !self.pass2_data_ready {
        return self.twopass_parse_frame_data(maybe_buf, consumed);
      }
    }
    Ok(consumed)
  }
}

#[cfg(test)]
mod test {
  use super::{bexp64, blog64};

  #[test]
  fn blog64_vectors() {
    assert!(blog64(1793) == 0x159dc71e24d32daf);
    assert!(blog64(0x678dde6e5fd29f05) == 0x7d6373ad151ca685);
  }

  #[test]
  fn bexp64_vectors() {
    assert!(bexp64(0x159dc71e24d32daf) == 1793);
    assert!((bexp64(0x7d6373ad151ca685) - 0x678dde6e5fd29f05).abs() < 29);
  }

  #[test]
  fn blog64_bexp64_round_trip() {
    for a in 1..=std::u16::MAX as i64 {
      let b = std::i64::MAX / a;
      let (log_a, log_b, log_ab) = (blog64(a), blog64(b), blog64(a * b));
      assert!((log_a + log_b - log_ab).abs() < 4);
      assert!(bexp64(log_a) == a);
      assert!((bexp64(log_b) - b).abs() < 128);
      assert!((bexp64(log_ab) - a * b).abs() < 128);
    }
  }
}