1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
pub mod default_layout_engine;

use crate::{
    widget::{
        unit::WidgetUnit,
        utils::{Rect, Vec2},
        WidgetId,
    },
    Scalar,
};
use serde::{Deserialize, Serialize};
use std::collections::HashMap;

pub trait LayoutEngine<E> {
    fn layout(&mut self, register_props: &CoordsMapping, tree: &WidgetUnit) -> Result<Layout, E>;
}

#[derive(Default, Clone)]
pub struct Layout {
    pub ui_space: Rect,
    pub items: HashMap<WidgetId, LayoutItem>,
}

impl std::fmt::Debug for Layout {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Layout")
            .field("ui_space", &self.ui_space)
            .field("items", &LayoutSortedItems::new(&self.items))
            .finish()
    }
}

struct LayoutSortedItems<'a>(Vec<(&'a WidgetId, &'a LayoutItem)>);

impl<'a> LayoutSortedItems<'a> {
    fn new(items: &'a HashMap<WidgetId, LayoutItem>) -> Self {
        let mut items = items.iter().collect::<Vec<_>>();
        items.sort_by(|a, b| a.0.path().cmp(b.0.path()));
        Self(items)
    }
}

impl<'a> std::fmt::Debug for LayoutSortedItems<'a> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_map()
            .entries(self.0.iter().map(|&(k, v)| (k, v)))
            .finish()
    }
}

impl Layout {
    pub fn virtual_to_real(&self, mapping: &CoordsMapping) -> Self {
        Self {
            ui_space: mapping.virtual_to_real_rect(self.ui_space),
            items: self
                .items
                .iter()
                .map(|(k, v)| (k.to_owned(), v.virtual_to_real(mapping)))
                .collect::<HashMap<_, _>>(),
        }
    }

    pub fn real_to_virtual(&self, mapping: &CoordsMapping) -> Self {
        Self {
            ui_space: mapping.real_to_virtual_rect(self.ui_space),
            items: self
                .items
                .iter()
                .map(|(k, v)| (k.to_owned(), v.real_to_virtual(mapping)))
                .collect::<HashMap<_, _>>(),
        }
    }
}

#[derive(Debug, Default, Clone)]
pub struct LayoutNode {
    pub id: WidgetId,
    pub local_space: Rect,
    pub children: Vec<LayoutNode>,
}

impl LayoutNode {
    pub fn count(&self) -> usize {
        1 + self.children.iter().map(Self::count).sum::<usize>()
    }
}

#[derive(Debug, Default, Copy, Clone)]
pub struct LayoutItem {
    pub local_space: Rect,
    pub ui_space: Rect,
}

impl LayoutItem {
    pub fn virtual_to_real(&self, mapping: &CoordsMapping) -> Self {
        Self {
            local_space: mapping.virtual_to_real_rect(self.local_space),
            ui_space: mapping.virtual_to_real_rect(self.ui_space),
        }
    }

    pub fn real_to_virtual(&self, mapping: &CoordsMapping) -> Self {
        Self {
            local_space: mapping.real_to_virtual_rect(self.local_space),
            ui_space: mapping.real_to_virtual_rect(self.ui_space),
        }
    }
}

impl LayoutEngine<()> for () {
    fn layout(&mut self, mapping: &CoordsMapping, _: &WidgetUnit) -> Result<Layout, ()> {
        Ok(Layout {
            ui_space: mapping.virtual_area(),
            items: Default::default(),
        })
    }
}

#[derive(Debug, Copy, Clone, Serialize, Deserialize)]
pub enum CoordsMappingScaling {
    None,
    Fit(Vec2),
    FitHorizontal(Scalar),
    FitVertical(Scalar),
    FitMinimum(Vec2),
    FitMaximum(Vec2),
}

impl Default for CoordsMappingScaling {
    fn default() -> Self {
        Self::None
    }
}

#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct CoordsMapping {
    #[serde(default)]
    scale: Scalar,
    #[serde(default)]
    offset: Vec2,
    #[serde(default)]
    real_area: Rect,
    #[serde(default)]
    virtual_area: Rect,
}

impl Default for CoordsMapping {
    fn default() -> Self {
        Self::new(Default::default())
    }
}

impl CoordsMapping {
    pub fn new(real_area: Rect) -> Self {
        Self {
            scale: 1.0,
            offset: Vec2::default(),
            real_area,
            virtual_area: Rect {
                left: 0.0,
                right: real_area.width(),
                top: 0.0,
                bottom: real_area.height(),
            },
        }
    }

    pub fn new_scaling(real_area: Rect, scaling: CoordsMappingScaling) -> Self {
        match scaling {
            CoordsMappingScaling::Fit(size) => {
                let vw = size.x;
                let vh = size.y;
                let rw = real_area.width();
                let rh = real_area.height();
                let va = vw / vh;
                let ra = rw / rh;
                let scale = if va >= ra { rw / vw } else { rh / vh };
                let w = vw * scale;
                let h = vh * scale;
                Self {
                    scale,
                    offset: Vec2 {
                        x: (rw - w) * 0.5,
                        y: (rh - h) * 0.5,
                    },
                    real_area,
                    virtual_area: Rect {
                        left: 0.0,
                        right: vw,
                        top: 0.0,
                        bottom: vh,
                    },
                }
            }
            CoordsMappingScaling::FitHorizontal(vw) => {
                let rw = real_area.width();
                let rh = real_area.height();
                let scale = rw / vw;
                let vh = rh / scale;
                Self {
                    scale,
                    offset: Vec2::default(),
                    real_area,
                    virtual_area: Rect {
                        left: 0.0,
                        right: vw,
                        top: 0.0,
                        bottom: vh,
                    },
                }
            }
            CoordsMappingScaling::FitVertical(vh) => {
                let rw = real_area.width();
                let rh = real_area.height();
                let scale = rh / vh;
                let vw = rw / scale;
                Self {
                    scale,
                    offset: Vec2::default(),
                    real_area,
                    virtual_area: Rect {
                        left: 0.0,
                        right: vw,
                        top: 0.0,
                        bottom: vh,
                    },
                }
            }
            CoordsMappingScaling::FitMinimum(size) => {
                if size.x < size.y {
                    Self::new_scaling(real_area, CoordsMappingScaling::FitHorizontal(size.x))
                } else {
                    Self::new_scaling(real_area, CoordsMappingScaling::FitVertical(size.y))
                }
            }
            CoordsMappingScaling::FitMaximum(size) => {
                if size.x > size.y {
                    Self::new_scaling(real_area, CoordsMappingScaling::FitHorizontal(size.x))
                } else {
                    Self::new_scaling(real_area, CoordsMappingScaling::FitVertical(size.y))
                }
            }
            _ => Self {
                scale: 1.0,
                offset: Vec2::default(),
                real_area,
                virtual_area: Rect {
                    left: 0.0,
                    right: real_area.width(),
                    top: 0.0,
                    bottom: real_area.height(),
                },
            },
        }
    }

    #[inline]
    pub fn scale(&self) -> Scalar {
        self.scale
    }

    #[inline]
    pub fn offset(&self) -> Vec2 {
        self.offset
    }

    #[inline]
    pub fn virtual_area(&self) -> Rect {
        self.virtual_area
    }

    #[inline]
    pub fn virtual_to_real_vec2(&self, coord: Vec2) -> Vec2 {
        Vec2 {
            x: self.offset.x + (coord.x * self.scale),
            y: self.offset.y + (coord.y * self.scale),
        }
    }

    #[inline]
    pub fn real_to_virtual_vec2(&self, coord: Vec2) -> Vec2 {
        Vec2 {
            x: (coord.x - self.offset.x) / self.scale,
            y: (coord.y - self.offset.y) / self.scale,
        }
    }

    #[inline]
    pub fn virtual_to_real_rect(&self, area: Rect) -> Rect {
        Rect {
            left: self.offset.x + (area.left * self.scale),
            right: self.offset.x + (area.right * self.scale),
            top: self.offset.y + (area.top * self.scale),
            bottom: self.offset.y + (area.bottom * self.scale),
        }
    }

    #[inline]
    pub fn real_to_virtual_rect(&self, area: Rect) -> Rect {
        Rect {
            left: (area.left - self.offset.x) / self.scale,
            right: (area.right - self.offset.x) / self.scale,
            top: (area.top - self.offset.y) / self.scale,
            bottom: (area.bottom - self.offset.y) / self.scale,
        }
    }
}