1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
//! An implementation of [rational numbers](https://en.wikipedia.org/wiki/Rational_number) and operations.

pub mod extras;
mod ops;

#[cfg(feature = "num-traits")]
mod num;

use extras::gcd;
use std::{
    fmt::{self, Display},
    str::FromStr,
};

const DENOMINATOR_CANT_BE_ZERO: &str = "denominator can't be zero";

/// A rational number (a fraction of two integers).
#[derive(Copy, Clone, Debug, Hash, PartialEq)]
pub struct Rational {
    /// The numerator (number above the fraction line).
    numerator: i128,
    /// The denominator (number below the fraction line).
    denominator: i128,
}

impl Rational {
    fn construct_and_reduce(mut num: i128, mut den: i128) -> Self {
        if den.is_negative() {
            // if both are negative, then both should be positive (reduce the -1 factor)
            // if only the denominator is negative, then move the -1 factor to the numerator for aesthetics
            num = -num;
            den = -den;
        }

        let mut this = Self::raw(num, den);
        this.reduce();
        this
    }

    /// Create a new Rational without checking that `denominator` is non-zero, or reducing the Rational afterwards.
    fn raw(numerator: i128, denominator: i128) -> Self {
        Self {
            numerator,
            denominator,
        }
    }

    /// Construct a new Rational.
    ///
    /// ## Panics
    /// * If the resulting denominator is 0.
    pub fn new<N, D>(numerator: N, denominator: D) -> Self
    where
        N: Into<Self>,
        D: Into<Self>,
    {
        Self::new_checked(numerator, denominator).expect(DENOMINATOR_CANT_BE_ZERO)
    }

    /// Construct a new Rational, returning `None` if the denominator is 0.
    pub fn new_checked<N, D>(numerator: N, denominator: D) -> Option<Self>
    where
        N: Into<Self>,
        D: Into<Self>,
    {
        let numerator: Self = numerator.into();
        let denominator: Self = denominator.into();

        let num = numerator.numerator() * denominator.denominator();
        let den = numerator.denominator() * denominator.numerator();

        if den == 0 {
            return None;
        }

        let this = Self::construct_and_reduce(num, den);

        Some(this)
    }

    /// Create a `Rational` from a [mixed fraction](https://en.wikipedia.org/wiki/Fraction#Mixed_numbers).
    ///
    /// ## Example
    /// ```rust
    /// # use rational::*;
    /// assert_eq!(Rational::from_mixed(1, (1, 2)), Rational::new(3, 2));
    /// assert_eq!(Rational::from_mixed(-1, (-1, 2)), Rational::new(-3, 2));
    /// ```
    pub fn from_mixed<T>(whole: i128, fract: T) -> Self
    where
        T: Into<Self>,
    {
        let fract: Self = fract.into();
        Self::integer(whole) + fract
    }

    /// Shorthand for creating an integer `Rational`, eg. 5/1.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::integer(5), Rational::new(5, 1));
    /// assert_eq!(Rational::integer(-100), Rational::new(-100, 1));
    /// ```
    pub fn integer(n: i128) -> Self {
        // use 'raw' since an integer is always already reduced
        Self::raw(n, 1)
    }

    /// Shorthand for 0/1.
    pub fn zero() -> Self {
        Self::integer(0)
    }

    /// Shorthand for 1/1.
    pub fn one() -> Self {
        Self::integer(1)
    }

    /// Get the numerator in this `Rational`.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// let r = Rational::new(4, 6);
    /// assert_eq!(r.numerator(), 2); // `r` has been reduced to 2/3
    /// ```
    pub fn numerator(&self) -> i128 {
        self.numerator
    }

    /// Set the numerator of this `Rational`. It is then automatically reduced.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// let mut r = Rational::new(4, 5);
    /// r.set_numerator(10);
    /// assert_eq!(r, Rational::new(2, 1)); // 10/5 reduces to 2/1
    /// ```
    pub fn set_numerator(&mut self, numerator: i128) {
        self.numerator = numerator;
        self.reduce();
    }

    /// Get the denominator in this `Rational`.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// let r = Rational::new(4, 6);
    /// assert_eq!(r.denominator(), 3); // `r` has been reduced to 2/3
    /// ```
    pub fn denominator(&self) -> i128 {
        self.denominator
    }

    /// Set the denominator of this `Rational`. It is then automatically reduced.
    ///
    /// ## Panics
    /// * If `denominator` is 0.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// let mut r = Rational::new(4, 5);
    /// r.set_denominator(6);
    /// assert_eq!(r, Rational::new(2, 3));
    /// ```
    pub fn set_denominator(&mut self, denominator: i128) {
        if denominator == 0 {
            panic!("{}", DENOMINATOR_CANT_BE_ZERO);
        }

        self.denominator = denominator;
        self.reduce();
    }

    /// Returns the inverse of this `Rational`, or `None` if the denominator of the inverse is 0.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// let r = Rational::new(1, 2);
    /// assert_eq!(r.inverse_checked(), Some(Rational::new(2, 1)));
    /// let zero = Rational::new(0, 1);
    /// assert!(zero.inverse_checked().is_none());
    /// ```
    pub fn inverse_checked(self) -> Option<Self> {
        if self.numerator() == 0 {
            None
        } else {
            let (num, den) = if self.numerator().is_negative() {
                (-self.denominator(), -self.numerator())
            } else {
                (self.denominator(), self.numerator())
            };
            // since all rationals are automatically reduced,
            // we can just swap the numerator and denominator
            // without calculating their GCD's again
            Some(Self::construct_and_reduce(num, den))
        }
    }

    /// Returns the inverse of this `Rational`.
    ///
    /// ## Panics
    /// * If the numerator is 0, since then the inverse will be divided by 0.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(1, 2).inverse(), Rational::new(2, 1));
    /// ```
    pub fn inverse(self) -> Self {
        Self::new(1, self)
    }

    /// Returns the decimal value of this `Rational`.
    /// Equivalent to `f64::from(self)`.
    pub fn decimal_value(self) -> f64 {
        f64::from(self)
    }

    /// Checked addition. Computes `self + rhs`, returning `None` if overflow occurred.
    ///
    /// ## Notes
    /// Keep in mind that there are various operations performed in order to add two rational numbers,
    /// which may lead to overflow for rationals with very large numerators or denominators, even though the rational number
    /// itself may be small.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(1, 2).checked_add(Rational::new(2, 3)), Some(Rational::new(7, 6)));
    /// assert_eq!(Rational::new(1, 2).checked_add(2_i32), Some(Rational::new(5, 2)));
    /// assert!(Rational::new(1, 1).checked_add(i128::MAX).is_none());
    /// ```
    pub fn checked_add<T>(self, rhs: T) -> Option<Self>
    where
        T: Into<Self>,
    {
        let rhs: Self = rhs.into();
        let gcd = gcd(self.denominator(), rhs.denominator());
        let lcm = self
            .denominator()
            .abs()
            .checked_mul(rhs.denominator().abs().checked_div(gcd)?)?;

        let num1 = self
            .numerator()
            .checked_mul(lcm.checked_div(self.denominator())?)?;
        let num2 = rhs
            .numerator()
            .checked_mul(lcm.checked_div(rhs.denominator())?)?;

        let num = num1.checked_add(num2)?;
        Some(Rational::new::<i128, i128>(num, lcm))
    }

    /// Checked multiplication. Computes `self * rhs`, returning `None` if overflow occurred.
    ///
    /// ## Notes
    /// Keep in mind that there are various operations performed in order to multiply two rational numbers,
    /// which may lead to overflow for rationals with very large numerators or denominators, even though the rational number
    /// itself may be small.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(1, 2).checked_mul(Rational::new(2, 3)), Some(Rational::new(1, 3)));
    /// assert_eq!(Rational::new(1, 2).checked_mul(2_i32), Some(Rational::new(1, 1)));
    /// assert!(Rational::new(2, 1).checked_mul(i128::MAX).is_none());
    /// ```
    pub fn checked_mul<T>(self, rhs: T) -> Option<Self>
    where
        T: Into<Self>,
    {
        let rhs: Self = rhs.into();
        let (self_num, self_den) = (self.numerator(), self.denominator());
        let (rhs_num, rhs_den) = (rhs.numerator(), rhs.denominator());
        let num_den_gcd = gcd(self_num, rhs_den);
        let den_num_gcd = gcd(self_den, rhs_num);
        let numerator = self_num
            .checked_div(num_den_gcd)?
            .checked_mul(rhs_num.checked_div(den_num_gcd)?)?;
        let denominator = self_den
            .checked_div(den_num_gcd)?
            .checked_mul(rhs_den.checked_div(num_den_gcd)?)?;

        Some(Rational::raw(numerator, denominator))
    }

    /// Checked subtraction. Computes `self - rhs`, returning `None` if overflow occurred.
    ///
    /// ## Notes
    /// Keep in mind that there are various operations performed in order to subtract two rational numbers,
    /// which may lead to overflow for rationals with very large numerators or denominators, even though the rational number
    /// itself may be small.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(1, 2).checked_sub(Rational::new(2, 3)), Some(Rational::new(-1, 6)));
    /// assert_eq!(Rational::new(1, 2).checked_sub(2_i32), Some(Rational::new(-3, 2)));
    /// assert!(Rational::new(-10, 1).checked_sub(i128::MAX).is_none());
    /// ```
    pub fn checked_sub<T>(self, rhs: T) -> Option<Self>
    where
        T: Into<Self>,
    {
        let rhs: Self = rhs.into();
        self.checked_add::<Rational>(-rhs)
    }

    /// Checked division. Computes `self / rhs`, returning `None` if overflow occurred.
    ///
    /// ## Panics
    /// * If `rhs == 0`
    ///
    /// ## Notes
    /// Keep in mind that there are various operations performed in order to divide two rational numbers,
    /// which may lead to overflow for rationals with very large numerators or denominators, even though the rational number
    /// itself may be small.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(1, 2).checked_div(Rational::new(2, 3)), Some(Rational::new(3, 4)));
    /// assert_eq!(Rational::new(1, 2).checked_div(2_i32), Some(Rational::new(1, 4)));
    /// assert!(Rational::new(1, i128::MAX).checked_div(i128::MAX).is_none());
    /// ```
    pub fn checked_div<T>(self, rhs: T) -> Option<Self>
    where
        T: Into<Self>,
    {
        let rhs: Self = rhs.into();
        self.checked_mul::<Rational>(rhs.inverse())
    }

    /// Computes `self^exp`.
    ///
    /// ## Notes
    /// Unlike the `pow` methods in `std`, this supports negative exponents, returning the inverse of the result.
    /// The exponent still needs to be an integer, since a rational number raised to the power of another rational number may be irrational.
    ///
    /// ## Panics
    /// * If the numerator is 0 and `exp` is negative (since a negative exponent will result in an inversed fraction).
    ///
    /// ## Example
    /// ```rust
    /// # use rational::*;
    /// assert_eq!(Rational::new(2, 3).pow(2), Rational::new(4, 9));
    /// assert_eq!(Rational::new(1, 4).pow(-2), Rational::new(16, 1));
    /// ```
    pub fn pow(self, exp: i32) -> Rational {
        let abs = exp.unsigned_abs();
        let result =
            Self::construct_and_reduce(self.numerator().pow(abs), self.denominator().pow(abs));
        if exp.is_negative() {
            result.inverse()
        } else {
            result
        }
    }

    /// Checked exponentiation. Computes `self^exp`, returning `None` if overflow occurred.
    ///
    /// ## Notes
    /// Unlike the `pow` methods in `std`, this supports negative exponents, returning the inverse of the result.
    /// The exponent still needs to be an integer, since a rational number raised to the power of another rational number may be irrational.
    ///
    /// ## Panics
    /// * If the numerator is 0 and `exp` is negative (since a negative exponent will result in an inversed fraction).
    ///
    /// ## Example
    /// ```rust
    /// # use rational::*;
    /// assert_eq!(Rational::new(2, 3).pow(2), Rational::new(4, 9));
    /// assert_eq!(Rational::new(1, 4).pow(-2), Rational::new(16, 1));
    /// ```
    pub fn checked_pow(self, exp: i32) -> Option<Self> {
        if self == Self::zero() && exp.is_negative() {
            return None;
        }

        let abs = exp.unsigned_abs();
        let num = self.numerator().checked_pow(abs)?;
        let den = self.denominator().checked_pow(abs)?;
        let result = Self::construct_and_reduce(num, den);
        if exp.is_negative() {
            Some(result.inverse())
        } else {
            Some(result)
        }
    }

    /// Checked negation. Computes `-self`, returning `None` if overflow occurred.
    ///
    /// ## Notes
    /// This only returns `None` if `self.numerator() == i128::MIN`.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(1, 2).checked_neg(), Some(Rational::new(-1, 2)));
    /// assert_eq!(Rational::new(-1, 2).checked_neg(), Some(Rational::new(1, 2)));
    /// assert_eq!(Rational::new(i128::MIN, 1).checked_neg(), None);
    /// ```
    pub fn checked_neg(self) -> Option<Self> {
        if self.numerator() == i128::MIN {
            None
        } else {
            Some(-self)
        }
    }

    /// Computes the absolute value of `self`.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::*;
    /// assert_eq!(Rational::new(-5, 3).abs(), Rational::new(5, 3));
    /// ```
    pub fn abs(self) -> Self {
        // use `raw` since we know neither numerator or denominator will be negative
        Self::raw(self.numerator.abs(), self.denominator)
    }

    /// Returns `true` if `self` is an integer.
    /// This is a shorthand for `self.denominator() == 1`.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::*;
    /// assert!(Rational::new(2, 1).is_integer());
    /// assert!(!Rational::new(1, 2).is_integer());
    /// ```
    pub fn is_integer(&self) -> bool {
        self.denominator() == 1
    }

    /// Returns `true` if `self` is positive and `false` if it is zero or negative.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::*;
    /// assert!(Rational::new(1, 2).is_positive());
    /// assert!(Rational::new(-1, -2).is_positive());
    /// assert!(!Rational::new(-1, 2).is_positive());
    /// assert!(!Rational::zero().is_positive());
    /// ```
    pub fn is_positive(&self) -> bool {
        self.numerator().is_positive()
    }

    /// Returns `true` if `self` is negative and `false` if it is zero or positive.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::*;
    /// assert!(Rational::new(-1, 2).is_negative());
    /// assert!(Rational::new(1, -2).is_negative());
    /// assert!(!Rational::zero().is_negative());
    /// ```
    pub fn is_negative(&self) -> bool {
        self.numerator().is_negative()
    }

    /// Returns a tuple representing `self` as a [mixed fraction](https://en.wikipedia.org/wiki/Fraction#Mixed_numbers).
    ///
    /// ## Notes
    /// The result is a tuple `(whole: i128, fraction: Rational)`, such that `whole + fraction == self`.
    /// This means that while you might write -7/2 as a mixed fraction: -3½, the result will be a tuple (-3, -1/2).
    ///
    /// ## Example
    /// ```rust
    /// # use rational::*;
    /// assert_eq!(Rational::new(7, 3).mixed_fraction(), (2, Rational::new(1, 3)));
    /// let (mixed, fract) = Rational::new(-7, 2).mixed_fraction();
    /// assert_eq!((mixed, fract), (-3, Rational::new(-1, 2)));
    /// assert_eq!(mixed + fract, Rational::new(-7, 2));
    /// ```
    pub fn mixed_fraction(self) -> (i128, Self) {
        let rem = self.numerator() % self.denominator();
        let whole = self.numerator() / self.denominator();
        let fract = Self::new(rem, self.denominator());
        debug_assert_eq!(whole + fract, self);
        (whole, fract)
    }

    /// Returns the nearest integer to `self`. If a value is half-way between two
    /// integers, round away from `0.0`.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(1, 2).round(), Rational::integer(1));
    /// assert_eq!(Rational::new(-1, 2).round(), Rational::integer(-1));
    /// ```
    pub fn round(self) -> Self {
        if self.is_positive() {
            let left = Self::integer(self.numerator() / self.denominator());
            let right = left + 1;
            let dist_to_left = self - left;
            let dist_to_right = right - self;

            if dist_to_right <= dist_to_left {
                right
            } else {
                left
            }
        } else if self.is_negative() {
            let right = Self::integer(self.numerator() / self.denominator());
            let left = right - 1;
            let dist_to_left = self - left;
            let dist_to_right = right - self;

            if dist_to_left <= dist_to_right {
                left
            } else {
                right
            }
        } else {
            self
        }
    }

    /// Returns the largest integer less than or equal to self.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(4, 3).floor(), Rational::integer(1));
    /// assert_eq!(Rational::new(-3, 2).floor(), Rational::integer(-2));
    /// ```
    pub fn floor(self) -> Self {
        let r = Self::integer(self.numerator() / self.denominator());
        if self.is_negative() && self != r {
            r - 1
        } else {
            r
        }
    }

    /// Returns the smallest integer greater than or equal to self.
    ///
    /// ## Example
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::new(4, 3).ceil(), Rational::integer(2));
    /// assert_eq!(Rational::new(-3, 2).ceil(), Rational::integer(-1));
    /// ```
    pub fn ceil(self) -> Self {
        let r = Self::integer(self.numerator() / self.denominator());
        if self.is_positive() && self != r {
            r + 1
        } else {
            r
        }
    }

    /// Converts a string slice in a given base to a `Rational`.
    ///
    /// The string is expected be in one of the following two forms:
    /// * `"x/y"`, where `x` and `y` follow the format expected by the `from_str_radix` methods in the standard library.
    /// * `"x"`, where `x` follow the format expected by the `from_str_radix` methods in the standard library.
    ///
    /// ## Panics
    /// * If `radix` is not in the range from 2 to 36.
    ///
    /// ## Examples
    /// ```rust
    /// # use rational::Rational;
    /// assert_eq!(Rational::from_str_radix("1/2", 10), Ok(Rational::new(1, 2)));
    /// assert_eq!(Rational::from_str_radix("110", 2), Ok(Rational::integer(6)));
    /// assert_eq!(Rational::from_str_radix("-1/2", 10), Ok(Rational::new(-1, 2)));
    /// assert_eq!(Rational::from_str_radix("1/-2", 10), Ok(Rational::new(-1, 2)));
    /// ```
    ///
    pub fn from_str_radix(s: &str, radix: u32) -> Result<Self, ParseRationalError> {
        match s.split_once('/') {
            Some((num, den)) => {
                let num =
                    i128::from_str_radix(num, radix).map_err(ParseRationalError::ParseIntError)?;
                let den =
                    i128::from_str_radix(den, radix).map_err(ParseRationalError::ParseIntError)?;
                Ok(Self::new(num, den))
            }
            None => {
                let num =
                    i128::from_str_radix(s, radix).map_err(ParseRationalError::ParseIntError)?;
                Ok(Self::integer(num))
            }
        }
    }

    fn reduce(&mut self) {
        let gcd = gcd(self.numerator, self.denominator);
        self.numerator /= gcd;
        self.denominator /= gcd;
    }
}

macro_rules! impl_from {
    ($type:ty) => {
        impl From<$type> for Rational {
            fn from(v: $type) -> Self {
                Rational::raw(v as i128, 1)
            }
        }

        impl From<&$type> for Rational {
            fn from(v: &$type) -> Self {
                Rational::raw(*v as i128, 1)
            }
        }
    };
}

impl_from!(u8);
impl_from!(u16);
impl_from!(u32);
impl_from!(u64);
impl_from!(i8);
impl_from!(i16);
impl_from!(i32);
impl_from!(i64);
impl_from!(i128);

impl<T, U> From<(T, U)> for Rational
where
    T: Into<Rational>,
    U: Into<Rational>,
{
    fn from((n, d): (T, U)) -> Self {
        let n: Self = n.into();
        let d: Self = d.into();

        Self::new(n, d)
    }
}

impl From<Rational> for (i128, i128) {
    fn from(r: Rational) -> Self {
        (r.numerator(), r.denominator())
    }
}

impl Eq for Rational {}

impl Ord for Rational {
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        use std::cmp::Ordering;

        // simple test, if one of the numbers is negative and the other one is positive,
        // no algorithm is needed
        match (self.is_negative(), other.is_negative()) {
            (true, false) => {
                return Ordering::Less;
            }
            (false, true) => return Ordering::Greater,
            _ => (),
        }

        let mut a = *self;
        let mut b = *other;
        loop {
            let (q1, r1) = a.mixed_fraction();
            let (q2, r2) = b.mixed_fraction();
            match q1.cmp(&q2) {
                Ordering::Equal => match (r1.numerator() == 0, r2.numerator() == 0) {
                    (true, true) => {
                        // both remainders are zero, equal
                        return Ordering::Equal;
                    }
                    (true, false) => {
                        // left remainder is 0, so left is smaller than right
                        return Ordering::Less;
                    }
                    (false, true) => {
                        // right remainder is 0, so right is smaller than left
                        return Ordering::Greater;
                    }
                    (false, false) => {
                        a = r2.inverse();
                        b = r1.inverse();
                    }
                },
                other => {
                    return other;
                }
            }
        }
    }
}

impl PartialOrd for Rational {
    fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

macro_rules! impl_eq_integer {
    ($type:ty) => {
        impl PartialEq<$type> for Rational {
            fn eq(&self, other: &$type) -> bool {
                *self == Self::integer(*other as i128)
            }
        }

        impl PartialEq<Rational> for $type {
            fn eq(&self, other: &Rational) -> bool {
                Rational::integer(*self as i128) == *other
            }
        }
    };
}

macro_rules! impl_eq_float {
    ($type:ty) => {
        impl PartialEq<$type> for Rational {
            fn eq(&self, other: &$type) -> bool {
                self.decimal_value() == (*other as f64)
            }
        }

        impl PartialEq<Rational> for $type {
            fn eq(&self, other: &Rational) -> bool {
                (*self as f64) == other.decimal_value()
            }
        }
    };
}

impl_eq_integer!(i8);
impl_eq_integer!(i16);
impl_eq_integer!(i32);
impl_eq_integer!(i64);
impl_eq_integer!(i128);
impl_eq_integer!(u8);
impl_eq_integer!(u16);
impl_eq_integer!(u32);
impl_eq_integer!(u64);

impl_eq_float!(f32);
impl_eq_float!(f64);

macro_rules! impl_cmp_integer {
    ($type:ty) => {
        impl PartialOrd<$type> for Rational {
            fn partial_cmp(&self, other: &$type) -> Option<std::cmp::Ordering> {
                Some(self.cmp(&Self::integer(*other as i128)))
            }
        }

        impl PartialOrd<Rational> for $type {
            fn partial_cmp(&self, other: &Rational) -> Option<std::cmp::Ordering> {
                Some(Rational::integer(*self as i128).cmp(other))
            }
        }
    };
}

macro_rules! impl_cmp_float {
    ($type:ty) => {
        impl PartialOrd<$type> for Rational {
            fn partial_cmp(&self, other: &$type) -> Option<std::cmp::Ordering> {
                self.decimal_value().partial_cmp(&(*other as f64))
            }
        }

        impl PartialOrd<Rational> for $type {
            fn partial_cmp(&self, other: &Rational) -> Option<std::cmp::Ordering> {
                (*self as f64).partial_cmp(&other.decimal_value())
            }
        }
    };
}

impl_cmp_integer!(i8);
impl_cmp_integer!(i16);
impl_cmp_integer!(i32);
impl_cmp_integer!(i64);
impl_cmp_integer!(i128);
impl_cmp_integer!(u8);
impl_cmp_integer!(u16);
impl_cmp_integer!(u32);
impl_cmp_integer!(u64);

impl_cmp_float!(f32);
impl_cmp_float!(f64);

impl From<Rational> for f64 {
    fn from(rat: Rational) -> f64 {
        (rat.numerator() as f64) / (rat.denominator() as f64)
    }
}

impl Display for Rational {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}/{}", self.numerator, self.denominator)
    }
}

impl FromStr for Rational {
    type Err = ParseRationalError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        Self::from_str_radix(s, 10)
    }
}

#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ParseRationalError {
    ParseIntError(std::num::ParseIntError),
}

impl Display for ParseRationalError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            Self::ParseIntError(err) => err.fmt(f),
        }
    }
}

impl std::error::Error for ParseRationalError {}

#[cfg(test)]
#[allow(unused)]
mod tests {
    use super::*;
    use crate::extras::*;
    use rand;
    use std::{cmp::Ordering, collections::HashMap};

    fn assert_eq_rational<Actual, Expected>(actual: Actual, expected: Expected)
    where
        Rational: From<Actual>,
        Rational: From<Expected>,
    {
        let actual = Rational::from(actual);
        let expected = Rational::from(expected);
        assert_eq!(actual, expected);
    }

    fn assert_ne_rat<Actual, Expected>(actual: Actual, expected: Expected)
    where
        Rational: From<Actual>,
        Rational: From<Expected>,
    {
        let actual = Rational::from(actual);
        let expected = Rational::from(expected);
        assert_ne!(actual, expected);
    }

    #[test]
    fn cmp_test() {
        assert_eq_rational((4, 8), (16, 32));
        assert_eq_rational((2, 3), (4, 6));
        assert_ne_rat((-1, 2), (1, 2));
        assert_eq!(Rational::zero(), 0);
        assert!(Rational::integer(15) > 14);
        assert_eq!(Rational::new(1, 3), 1.0 / 3.0);
        assert_eq!(Rational::new(1, 2), 0.5);
        assert!(Rational::new(1, 3) < 0.333333334);
        assert!(1 < r(3, 2));
        assert!(r(3, 2) > 1);
    }

    #[test]
    fn ctor_test() {
        let r = Rational::new((1, 2), (2, 4));
        assert_eq_rational(r, (1, 1));

        let r = Rational::new((1, 2), 3);
        assert_eq_rational(r, (1, 6));

        let r = Rational::new((1, 2), (2, 1));
        assert_eq_rational(r, (1, 4));

        let invalid = Rational::new_checked(1, 0);
        assert!(invalid.is_none());

        let r = Rational::new(0, 5);
        assert_eq_rational(r, (0, 1));

        let r = Rational::new(0, -100);
        assert_eq_rational(r, (0, 1));

        let r = Rational::new(5, -2);
        assert_eq!(r.numerator, -5);
        assert_eq!(r.denominator, 2);
    }

    #[test]
    fn inverse_test() {
        let inverse = Rational::new(5, 7).inverse();
        assert_eq_rational(inverse, (7, 5));

        let invalid_inverse = Rational::new(0, 1);
        assert!(invalid_inverse.inverse_checked().is_none());

        let inverse = Rational::new(-5, 7).inverse();
        assert_eq!(inverse.numerator(), -7);
        assert_eq!(inverse.denominator(), 5);
    }

    #[test]
    fn ordering_test() {
        let assert = |(n1, d1): (i128, i128), (n2, d2): (i128, i128), ord: Ordering| {
            let left = Rational::new(n1, d1);
            let right = Rational::new(n2, d2);
            assert_eq!(left.cmp(&right), ord);
        };
        assert((127, 298), (10, 11), Ordering::Less);
        assert((355, 113), (22, 7), Ordering::Less);
        assert((-11, 2), (5, 4), Ordering::Less);
        assert((5, 4), (20, 16), Ordering::Equal);
        assert((7, 4), (14, 11), Ordering::Greater);
        assert((-1, 2), (1, -2), Ordering::Equal);

        for n in 0..100_000 {
            let r1 = random_rat();
            let r2 = random_rat();
            let result1 = r1.cmp(&r2);
            let result2 = r1.decimal_value().partial_cmp(&r2.decimal_value()).unwrap();

            assert_eq!(
                result1, result2,
                "r1: {}, r2: {}, result1: {:?}, result2: {:?}, n: {}",
                r1, r2, result1, result2, n
            );
        }
    }

    #[test]
    fn hash_test() {
        let key1 = Rational::new(1, 2);
        let mut map = HashMap::new();

        map.insert(key1, "exists");

        assert_eq!(map.get(&Rational::new(2, 4)).unwrap(), &"exists");
        assert!(map.get(&Rational::new(1, 3)).is_none());
    }

    #[test]
    fn readme_test() {
        // A minimal library for representing rational numbers (ratios of integers).

        // ## Construction

        // Rationals are automatically reduced when created:
        let one_half = Rational::new(1, 2);
        let two_quarters = Rational::new(2, 4);
        assert_eq!(one_half, two_quarters);

        // `From` is implemented for integers and integer tuples:
        assert_eq!(Rational::from(1), Rational::new(1, 1));
        assert_eq!(Rational::from((1, 2)), Rational::new(1, 2));

        // The `new` method takes a numerator and denominator that implement `Into<Rational>`:
        let one_half_over_one_quarter = Rational::new((1, 2), (1, 4));
        assert_eq!(one_half_over_one_quarter, Rational::new(2, 1));

        // ## Mathematical operations

        // Operations and comparisons are implemented for Rationals and integers:
        let one_ninth = Rational::new(1, 9);
        assert_eq!(one_ninth + Rational::new(5, 4), Rational::new(49, 36));
        assert_eq!(one_ninth - 4, Rational::new(-35, 9));
        assert_eq!(one_ninth / Rational::new(21, 6), Rational::new(2, 63));
        assert!(one_ninth < Rational::new(1, 8));
        assert!(one_ninth < 1);

        // ## Other properties

        // Inverse:
        let eight_thirds = Rational::new(8, 3);
        let inverse = eight_thirds.inverse();
        assert_eq!(inverse, Rational::new(3, 8));

        // Mixed fractions:
        let (whole, fractional) = eight_thirds.mixed_fraction();
        assert_eq!(whole, 2);
        assert_eq!(fractional, Rational::new(2, 3));
    }

    #[test]
    fn set_denominator_test() {
        let mut rat = Rational::new(1, 6);
        rat.set_numerator(2);

        assert_eq!(rat, Rational::new(1, 3));
    }

    #[test]
    fn set_numerator_test() {
        let mut rat = Rational::new(2, 3);
        rat.set_denominator(4);

        assert_eq!(rat, Rational::new(1, 2));
    }

    #[test]
    #[should_panic]
    fn set_denominator_panic_test() {
        let mut rat = Rational::new(1, 2);
        rat.set_denominator(0);
    }

    #[test]
    fn mixed_fraction_test() {
        let assert = |(num, den): (i128, i128), whole: i128, (n, d): (i128, i128)| {
            let rat = Rational::new(num, den);
            let actual_mixed_fraction = rat.mixed_fraction();
            let fract = Rational::new(n, d);
            let expected_mixed_fraction = (whole, fract);
            let sum_of_parts = whole + fract;
            assert_eq!(
                actual_mixed_fraction,
                (whole, Rational::new(n, d)),
                "num: {}, den: {}",
                num,
                den
            );
            assert_eq!(sum_of_parts, rat);
        };

        assert((4, 3), 1, (1, 3));
        assert((4, 4), 1, (0, 1));
        assert((-3, 2), -1, (-1, 2));
        assert((10, 6), 1, (2, 3));
        assert((0, 2), 0, (0, 1));
        assert((-95, 36), -2, (-23, 36));
    }

    #[test]
    fn from_mixed_test() {
        assert_eq!(Rational::from_mixed(3, (1, 2)), Rational::new(7, 2));
        assert_eq!(Rational::from_mixed(0, (1, 2)), Rational::new(1, 2));
    }

    #[test]
    fn tuple_from_rational_test() {
        assert_eq!((1, 5), Rational::new(1, 5).into());
        assert_eq!((1, 5), Rational::new(2, 10).into());
        assert_eq!((-1, 5), Rational::new(2, -10).into());
    }

    #[test]
    fn pow_test() {
        assert_eq!((1, 25), Rational::new(1, 5).pow(2).into());
        assert_eq!((1, 9), Rational::new(2, 6).pow(2).into());
        assert_eq!((1, 1), Rational::new(2, 6).pow(0).into());
        assert_eq!((16, 1), Rational::new(1, 4).pow(-2).into());

        assert!(Rational::new(i128::MAX - 5, 1)
            .checked_pow(i32::MAX)
            .is_none());
    }

    #[should_panic]
    #[test]
    fn pow_panic_test() {
        Rational::zero().pow(-1);
    }

    #[test]
    fn abs_test() {
        assert_eq!(Rational::new(0, 5).abs(), Rational::zero());
        assert_eq!(Rational::new(1, 2).abs(), Rational::new(1, 2));
        assert_eq!(Rational::new(-1, 2).abs(), Rational::new(1, 2));
        assert_eq!(Rational::new(1, -2).abs(), Rational::new(1, 2));
    }

    #[test]
    fn checked_add_test() {
        assert_eq!(r(1, 2).checked_add(r(3, 5)), Some(r(11, 10)));
        assert!(Rational::integer(i128::MAX)
            .checked_add(i128::MAX)
            .is_none());
    }

    #[test]
    fn checked_mul_test() {
        assert_eq!(r(1, 2).checked_mul(r(3, 5)), Some(r(3, 10)));
        assert!(Rational::integer(i128::MAX)
            .checked_mul(i128::MAX)
            .is_none());
    }

    #[test]
    fn round_test() {
        assert_eq!(r(1, 2).round(), r(1, 1));
        assert_eq!(r(-1, 2).round(), r(-1, 1));
        assert_eq!(r(7, 3).round(), r(2, 1));
        assert_eq!(r(111, 4).round(), r(28, 1));
        assert_eq!(r(0, 1).round(), r(0, 1));
        assert_eq!(r(4, 2).round(), r(2, 1));
    }

    #[test]
    fn floor_test() {
        assert_eq!(r(1, 2).floor(), 0);
        assert_eq!(r(0, 1).floor(), 0);
        assert_eq!(r(5, 1).floor(), 5);
        assert_eq!(r(-1, 2).floor(), -1);
    }

    #[test]
    fn ceil_test() {
        assert_eq!(r(1, 2).ceil(), 1);
        assert_eq!(r(0, 1).ceil(), 0);
        assert_eq!(r(-4, 3).ceil(), -1);
    }

    #[test]
    fn parse_rational_test() {
        assert_eq!("1/2".parse(), Ok(r(1, 2)));
        assert_eq!("12".parse(), Ok(r(12, 1)));
        assert!(" 1/2".parse::<Rational>().is_err());
        assert!("1//2".parse::<Rational>().is_err());
        assert!("1/222/".parse::<Rational>().is_err());
        assert!("1/222/3".parse::<Rational>().is_err());
        assert!("/2".parse::<Rational>().is_err());

        assert_eq!(Rational::from_str_radix("110", 2), Ok(Rational::new(6, 1)));
        assert_eq!(
            Rational::from_str_radix("110/111", 2),
            Ok(Rational::new(6, 7))
        );
        assert_eq!(
            Rational::from_str_radix("-1/-2", 10),
            Ok(Rational::new(1, 2))
        );
    }

    fn random_rat() -> Rational {
        let den = loop {
            // generate a random non-zero integer
            let den: i128 = rand::random();
            if den != 0 {
                break den;
            }
        };
        Rational::new(rand::random::<i128>(), den)
    }
}