1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
//! # [Ratatui] `Colors_RGB` example
//!
//! The latest version of this example is available in the [examples] folder in the repository.
//!
//! Please note that the examples are designed to be run against the `main` branch of the Github
//! repository. This means that you may not be able to compile with the latest release version on
//! crates.io, or the one that you have installed locally.
//!
//! See the [examples readme] for more information on finding examples that match the version of the
//! library you are using.
//!
//! [Ratatui]: https://github.com/ratatui-org/ratatui
//! [examples]: https://github.com/ratatui-org/ratatui/blob/main/examples
//! [examples readme]: https://github.com/ratatui-org/ratatui/blob/main/examples/README.md

// This example shows the full range of RGB colors that can be displayed in the terminal.
//
// Requires a terminal that supports 24-bit color (true color) and unicode.
//
// This example also demonstrates how implementing the Widget trait on a mutable reference
// allows the widget to update its state while it is being rendered. This allows the fps
// widget to update the fps calculation and the colors widget to update a cached version of
// the colors to render instead of recalculating them every frame.
//
// This is an alternative to using the `StatefulWidget` trait and a separate state struct. It
// is useful when the state is only used by the widget and doesn't need to be shared with
// other widgets.

use std::{
    io::stdout,
    panic,
    time::{Duration, Instant},
};

use color_eyre::{config::HookBuilder, eyre, Result};
use crossterm::{
    event::{self, Event, KeyCode, KeyEventKind},
    terminal::{disable_raw_mode, enable_raw_mode, EnterAlternateScreen, LeaveAlternateScreen},
    ExecutableCommand,
};
use palette::{convert::FromColorUnclamped, Okhsv, Srgb};
use ratatui::prelude::*;

#[derive(Debug, Default)]
struct App {
    /// The current state of the app (running or quit)
    state: AppState,

    /// A widget that displays the current frames per second
    fps_widget: FpsWidget,

    /// A widget that displays the full range of RGB colors that can be displayed in the terminal.
    colors_widget: ColorsWidget,
}

#[derive(Debug, Default, PartialEq, Eq)]
enum AppState {
    /// The app is running
    #[default]
    Running,

    /// The user has requested the app to quit
    Quit,
}

/// A widget that displays the current frames per second
#[derive(Debug)]
struct FpsWidget {
    /// The number of elapsed frames that have passed - used to calculate the fps
    frame_count: usize,

    /// The last instant that the fps was calculated
    last_instant: Instant,

    /// The current frames per second
    fps: Option<f32>,
}

/// A widget that displays the full range of RGB colors that can be displayed in the terminal.
///
/// This widget is animated and will change colors over time.
#[derive(Debug, Default)]
struct ColorsWidget {
    /// The colors to render - should be double the height of the area as we render two rows of
    /// pixels for each row of the widget using the half block character. This is computed any time
    /// the size of the widget changes.
    colors: Vec<Vec<Color>>,

    /// the number of elapsed frames that have passed - used to animate the colors by shifting the
    /// x index by the frame number
    frame_count: usize,
}

fn main() -> Result<()> {
    install_error_hooks()?;
    let terminal = init_terminal()?;
    App::default().run(terminal)?;
    restore_terminal()?;
    Ok(())
}

impl App {
    /// Run the app
    ///
    /// This is the main event loop for the app.
    pub fn run(mut self, mut terminal: Terminal<impl Backend>) -> Result<()> {
        while self.is_running() {
            terminal.draw(|frame| frame.render_widget(&mut self, frame.size()))?;
            self.handle_events()?;
        }
        Ok(())
    }

    const fn is_running(&self) -> bool {
        matches!(self.state, AppState::Running)
    }

    /// Handle any events that have occurred since the last time the app was rendered.
    ///
    /// Currently, this only handles the q key to quit the app.
    fn handle_events(&mut self) -> Result<()> {
        // Ensure that the app only blocks for a period that allows the app to render at
        // approximately 60 FPS (this doesn't account for the time to render the frame, and will
        // also update the app immediately any time an event occurs)
        let timeout = Duration::from_secs_f32(1.0 / 60.0);
        if event::poll(timeout)? {
            if let Event::Key(key) = event::read()? {
                if key.kind == KeyEventKind::Press && key.code == KeyCode::Char('q') {
                    self.state = AppState::Quit;
                };
            }
        }
        Ok(())
    }
}

/// Implement the Widget trait for &mut App so that it can be rendered
///
/// This is implemented on a mutable reference so that the app can update its state while it is
/// being rendered. This allows the fps widget to update the fps calculation and the colors widget
/// to update the colors to render.
impl Widget for &mut App {
    fn render(self, area: Rect, buf: &mut Buffer) {
        #[allow(clippy::enum_glob_use)]
        use Constraint::*;
        let [top, colors] = Layout::vertical([Length(1), Min(0)]).areas(area);
        let [title, fps] = Layout::horizontal([Min(0), Length(8)]).areas(top);
        Text::from("colors_rgb example. Press q to quit")
            .centered()
            .render(title, buf);
        self.fps_widget.render(fps, buf);
        self.colors_widget.render(colors, buf);
    }
}

/// Default impl for `FpsWidget`
///
/// Manual impl is required because we need to initialize the `last_instant` field to the current
/// instant.
impl Default for FpsWidget {
    fn default() -> Self {
        Self {
            frame_count: 0,
            last_instant: Instant::now(),
            fps: None,
        }
    }
}

/// Widget impl for `FpsWidget`
///
/// This is implemented on a mutable reference so that we can update the frame count and fps
/// calculation while rendering.
impl Widget for &mut FpsWidget {
    fn render(self, area: Rect, buf: &mut Buffer) {
        self.calculate_fps();
        if let Some(fps) = self.fps {
            let text = format!("{fps:.1} fps");
            Text::from(text).render(area, buf);
        }
    }
}

impl FpsWidget {
    /// Update the fps calculation.
    ///
    /// This updates the fps once a second, but only if the widget has rendered at least 2 frames
    /// since the last calculation. This avoids noise in the fps calculation when rendering on slow
    /// machines that can't render at least 2 frames per second.
    #[allow(clippy::cast_precision_loss)]
    fn calculate_fps(&mut self) {
        self.frame_count += 1;
        let elapsed = self.last_instant.elapsed();
        if elapsed > Duration::from_secs(1) && self.frame_count > 2 {
            self.fps = Some(self.frame_count as f32 / elapsed.as_secs_f32());
            self.frame_count = 0;
            self.last_instant = Instant::now();
        }
    }
}

/// Widget impl for `ColorsWidget`
///
/// This is implemented on a mutable reference so that we can update the frame count and store a
/// cached version of the colors to render instead of recalculating them every frame.
impl Widget for &mut ColorsWidget {
    /// Render the widget
    fn render(self, area: Rect, buf: &mut Buffer) {
        self.setup_colors(area);
        let colors = &self.colors;
        for (xi, x) in (area.left()..area.right()).enumerate() {
            // animate the colors by shifting the x index by the frame number
            let xi = (xi + self.frame_count) % (area.width as usize);
            for (yi, y) in (area.top()..area.bottom()).enumerate() {
                // render a half block character for each row of pixels with the foreground color
                // set to the color of the pixel and the background color set to the color of the
                // pixel below it
                let fg = colors[yi * 2][xi];
                let bg = colors[yi * 2 + 1][xi];
                buf.get_mut(x, y).set_char('▀').set_fg(fg).set_bg(bg);
            }
        }
        self.frame_count += 1;
    }
}

impl ColorsWidget {
    /// Setup the colors to render.
    ///
    /// This is called once per frame to setup the colors to render. It caches the colors so that
    /// they don't need to be recalculated every frame.
    #[allow(clippy::cast_precision_loss)]
    fn setup_colors(&mut self, size: Rect) {
        let Rect { width, height, .. } = size;
        // double the height because each screen row has two rows of half block pixels
        let height = height as usize * 2;
        let width = width as usize;
        // only update the colors if the size has changed since the last time we rendered
        if self.colors.len() == height && self.colors[0].len() == width {
            return;
        }
        self.colors = Vec::with_capacity(height);
        for y in 0..height {
            let mut row = Vec::with_capacity(width);
            for x in 0..width {
                let hue = x as f32 * 360.0 / width as f32;
                let value = (height - y) as f32 / height as f32;
                let saturation = Okhsv::max_saturation();
                let color = Okhsv::new(hue, saturation, value);
                let color = Srgb::<f32>::from_color_unclamped(color);
                let color: Srgb<u8> = color.into_format();
                let color = Color::Rgb(color.red, color.green, color.blue);
                row.push(color);
            }
            self.colors.push(row);
        }
    }
}

/// Install `color_eyre` panic and error hooks
///
/// The hooks restore the terminal to a usable state before printing the error message.
fn install_error_hooks() -> Result<()> {
    let (panic, error) = HookBuilder::default().into_hooks();
    let panic = panic.into_panic_hook();
    let error = error.into_eyre_hook();
    eyre::set_hook(Box::new(move |e| {
        let _ = restore_terminal();
        error(e)
    }))?;
    panic::set_hook(Box::new(move |info| {
        let _ = restore_terminal();
        panic(info);
    }));
    Ok(())
}

fn init_terminal() -> Result<Terminal<impl Backend>> {
    enable_raw_mode()?;
    stdout().execute(EnterAlternateScreen)?;
    let mut terminal = Terminal::new(CrosstermBackend::new(stdout()))?;
    terminal.clear()?;
    terminal.hide_cursor()?;
    Ok(terminal)
}

fn restore_terminal() -> Result<()> {
    disable_raw_mode()?;
    stdout().execute(LeaveAlternateScreen)?;
    Ok(())
}