1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
use crate::rasterizer::Rasterizer;

use crate::blitter::*;
use sw_composite::*;

use crate::dash::*;
use crate::geom::*;
use crate::path_builder::*;

pub use crate::path_builder::Winding;
use lyon_geom::cubic_to_quadratic::cubic_to_quadratics;
use lyon_geom::CubicBezierSegment;

#[cfg(feature = "text")]
mod fk {
    pub use font_kit::canvas::{Canvas, Format, RasterizationOptions};
    pub use font_kit::font::Font;
    pub use font_kit::hinting::HintingOptions;
    pub use font_kit::loader::FontTransform;
}

use std::fs::*;
use std::io::BufWriter;

use crate::stroke::*;
use crate::{IntRect, IntPoint, Point, Transform, Vector};

use euclid::vec2;

#[derive(Clone)]
pub struct Mask {
    pub width: i32,
    pub height: i32,
    pub data: Vec<u8>,
}

/// A premultiplied color. i.e. r,b,g <= a
#[derive(Clone, Copy, PartialEq, Debug)]
pub struct SolidSource {
    pub r: u8,
    pub g: u8,
    pub b: u8,
    pub a: u8,
}

impl SolidSource {
    pub fn to_u32(&self) -> u32 {
        let color = ((self.a as u32) << 24)
            | ((self.r as u32) << 16)
            | ((self.g as u32) << 8)
            | ((self.b as u32) << 0);
        color
    }

    pub fn from_unpremultiplied_argb(a: u8, r: u8, g: u8, b: u8) -> Self {
        SolidSource {
            a: a,
            r: muldiv255(a as u32, r as u32) as u8,
            g: muldiv255(a as u32, g as u32) as u8,
            b: muldiv255(a as u32, b as u32) as u8
        }
    }
}

#[derive(PartialEq, Clone, Copy, Debug)]
pub enum BlendMode {
    Dst,
    Src,
    Clear,
    SrcOver,
    DstOver,
    SrcIn,
    DstIn,
    SrcOut,
    DstOut,
    SrcAtop,
    DstAtop,
    Xor,
    Add,

    Screen,
    Overlay,
    Darken,
    Lighten,
    ColorDodge,
    ColorBurn,
    HardLight,
    SoftLight,
    Difference,
    Exclusion,
    Multiply,
    Hue,
    Saturation,
    Color,
    Luminosity
}

trait Blender {
    type Output;
    fn build<T: blend::Blend>() -> Self::Output;
}

struct BlendRow;

fn blend_row<T: blend::Blend>(src: &[u32], dst: &mut [u32]) {
    for (dst, src) in dst.iter_mut().zip(src) {
        *dst = T::blend(*src, *dst);
    }
}

impl Blender for BlendRow {
    type Output = fn(&[u32], &mut [u32]);
    fn build<T: blend::Blend>() -> Self::Output {
        blend_row::<T>
    }
}

struct BlendRowMask;

fn blend_row_mask<T: blend::Blend>(src: &[u32], mask: &[u8], dst: &mut [u32]) {
    for ((dst, src), mask) in dst.iter_mut().zip(src).zip(mask) {
        *dst = lerp(
            *dst,
            T::blend(*src, *dst),
            alpha_to_alpha256(*mask as u32),
        );
    }
}

impl Blender for BlendRowMask {
    type Output = fn(&[u32], &[u8], &mut [u32]);
    fn build<T: blend::Blend>() -> Self::Output {
        blend_row_mask::<T>
    }
}

struct BlendRowMaskClip;

fn blend_row_mask_clip<T: blend::Blend>(src: &[u32], mask: &[u8], clip: &[u8], dst: &mut [u32]) {
    for (((dst, src), mask), clip) in dst.iter_mut().zip(src).zip(mask).zip(clip) {
        *dst = alpha_lerp(
            *dst,
            T::blend(*src, *dst),
            *mask as u32,
            *clip as u32
        );
    }
}

impl Blender for BlendRowMaskClip {
    type Output = fn(&[u32], &[u8], &[u8], &mut [u32]);
    fn build<T: blend::Blend>() -> Self::Output {
        blend_row_mask_clip::<T>
    }
}

fn build_blend_proc<T: Blender>(mode: BlendMode) -> T::Output {
    use sw_composite::blend::*;
    match mode {
        BlendMode::Dst => T::build::<Dst>(),
        BlendMode::Src => T::build::<Src>(),
        BlendMode::Clear => T::build::<Clear>(),
        BlendMode::SrcOver => T::build::<SrcOver>(),
        BlendMode::DstOver => T::build::<DstOver>(),
        BlendMode::SrcIn => T::build::<SrcIn>(),
        BlendMode::DstIn => T::build::<DstIn>(),
        BlendMode::SrcOut => T::build::<SrcOut>(),
        BlendMode::DstOut => T::build::<DstOut>(),
        BlendMode::SrcAtop => T::build::<SrcAtop>(),
        BlendMode::DstAtop => T::build::<DstAtop>(),
        BlendMode::Xor => T::build::<Xor>(),
        BlendMode::Add => T::build::<Add>(),
        BlendMode::Screen => T::build::<Screen>(),
        BlendMode::Overlay => T::build::<Overlay>(),
        BlendMode::Darken => T::build::<Darken>(),
        BlendMode::Lighten => T::build::<Lighten>(),
        BlendMode::ColorDodge => T::build::<ColorDodge>(),
        BlendMode::ColorBurn => T::build::<ColorBurn>(),
        BlendMode::HardLight => T::build::<HardLight>(),
        BlendMode::SoftLight => T::build::<SoftLight>(),
        BlendMode::Difference => T::build::<Difference>(),
        BlendMode::Exclusion => T::build::<Exclusion>(),
        BlendMode::Multiply => T::build::<Multiply>(),
        BlendMode::Hue => T::build::<Hue>(),
        BlendMode::Saturation => T::build::<Saturation>(),
        BlendMode::Color => T::build::<Color>(),
        BlendMode::Luminosity => T::build::<Luminosity>(),
    }
}

#[derive(Copy, Clone)]
pub enum ExtendMode {
    Pad,
    Repeat
}

#[derive(Copy, Clone, PartialEq)]
pub enum FilterMode {
    Bilinear,
    Nearest
}

/// LinearGradients have an implicit start point at 0,0 and an end point at 256,0. The transform
/// parameter can be used to adjust them to the desired location.
/// RadialGradients have an implict center at 0,0 and a radius of 128.
///
/// These locations are an artifact of the blitter implementation and will probably change in the
/// future to become more ergonomic.
#[derive(Clone)]
pub enum Source<'a> {
    Solid(SolidSource),
    Image(Image<'a>, ExtendMode, FilterMode, Transform),
    RadialGradient(Gradient, Spread, Transform),
    TwoCircleRadialGradient(Gradient, Spread, Point, f32, Point, f32, Transform),
    LinearGradient(Gradient, Spread, Transform),
}

impl<'a> Source<'a> {
    /// Creates a new linear gradient source where the start point corresponds to the gradient
    /// stop at position = 0 and the end point corresponds to the gradient stop at position = 1.
    pub fn new_linear_gradient(gradient: Gradient, start: Point, end: Point, spread: Spread) -> Source<'a> {
        let gradient_vector = Vector::new(end.x - start.x, end.y - start.y);
        // Get length of desired gradient vector
        let length = gradient_vector.length();
        if length != 0. {
            let gradient_vector = gradient_vector.normalize();

            let sin = gradient_vector.y;
            let cos = gradient_vector.x;
            // Build up a rotation matrix from our vector
            let mat = Transform::row_major(cos, -sin, sin, cos, 0., 0.);

            // Adjust for the start point
            let mat = mat.pre_translate(vec2(-start.x, -start.y));

            // Scale gradient to desired length
            let mat = mat.post_scale(1. / length, 1. / length);
            Source::LinearGradient(gradient, spread, mat)
        } else {
            // use some degenerate matrix
            Source::LinearGradient(gradient, spread, Transform::create_scale(0., 0.))
        }
    }

    /// Creates a new radial gradient that is centered at the given point and has the given radius.
    pub fn new_radial_gradient(gradient: Gradient, center: Point, radius: f32, spread: Spread) -> Source<'a> {
        // Scale gradient to desired radius
        let scale = Transform::create_scale(radius, radius);
        // Transform gradient to center of gradient
        let translate = Transform::create_translation(center.x, center.y);
        // Compute final transform
        let transform = translate.pre_transform(&scale).inverse().unwrap();

        Source::RadialGradient(gradient, spread, transform)
    }

    /// Creates a new radial gradient that is centered at the given point and has the given radius.
    pub fn new_two_circle_radial_gradient(gradient: Gradient, center1: Point, radius1: f32,  center2: Point, radius2: f32, spread: Spread) -> Source<'a> {
        let transform = Transform::identity();
        Source::TwoCircleRadialGradient(gradient, spread, center1, radius1, center2, radius2, transform)
    }
}

#[derive(PartialEq, Clone, Copy, Debug)]
pub enum AntialiasMode {
    None,
    Gray,
}

#[derive(PartialEq, Clone, Copy, Debug)]
pub struct DrawOptions {
    pub blend_mode: BlendMode,
    pub alpha: f32,
    pub antialias: AntialiasMode,
}

impl DrawOptions {
    pub fn new() -> Self {
        Default::default()
    }
}

impl Default for DrawOptions {
    fn default() -> Self {
        DrawOptions {
            blend_mode: BlendMode::SrcOver,
            alpha: 1.,
            antialias: AntialiasMode::Gray,
        }
    }
}

#[derive(Clone)]
struct Clip {
    rect: IntRect,
    mask: Option<Vec<u8>>,
}

#[derive(Clone)]
struct Layer {
    buf: Vec<u32>,
    opacity: f32,
    rect: IntRect,
    blend: BlendMode,
}

fn scaled_tolerance(x: f32, trans: &Transform) -> f32 {
    // The absolute value of the determinant is the area parallelogram
    // Take the sqrt of the area to losily convert to one dimension
    x / trans.determinant().abs().sqrt()
}



/// The main type used for drawing
pub struct DrawTarget {
    width: i32,
    height: i32,
    rasterizer: Rasterizer,
    current_point: Option<Point>,
    first_point: Option<Point>,
    buf: Vec<u32>,
    clip_stack: Vec<Clip>,
    layer_stack: Vec<Layer>,
    transform: Transform,
}

impl DrawTarget {
    pub fn new(width: i32, height: i32) -> DrawTarget {
        DrawTarget {
            width,
            height,
            current_point: None,
            first_point: None,
            rasterizer: Rasterizer::new(width, height),
            buf: vec![0; (width * height) as usize],
            clip_stack: Vec::new(),
            layer_stack: Vec::new(),
            transform: Transform::identity(),
        }
    }

    pub fn width(&self) -> i32 {
        self.width
    }

    pub fn height(&self) -> i32 {
        self.height
    }

    /// Use a previously used vector for the bitmap and extend it to the given size(if needed)
    pub fn from_vec(width: i32, height: i32, mut vec: Vec<u32>) -> DrawTarget{
        vec.resize((width*height) as usize, 0);
        DrawTarget {
            width,
            height,
            current_point: None,
            first_point: None,
            rasterizer: Rasterizer::new(width, height),
            buf: vec,
            clip_stack: Vec::new(),
            layer_stack: Vec::new(),
            transform: Transform::identity()
    }
}

    /// sets a transform that will be applied to all drawing operations
    pub fn set_transform(&mut self, transform: &Transform) {
        self.transform = *transform;
    }

    /// gets the current transform
    pub fn get_transform(&self) -> &Transform {
        &self.transform
    }

    fn move_to(&mut self, pt: Point) {
        self.current_point = Some(pt);
        self.first_point = Some(pt);
    }

    fn line_to(&mut self, pt: Point) {
        if self.current_point.is_none() {
            self.current_point = Some(pt);
            self.first_point = Some(pt);
        }
        if let Some(current_point) = self.current_point {
            self.rasterizer
                .add_edge(current_point, pt, false, Point::new(0., 0.));
            self.current_point = Some(pt);
        }
    }

    fn quad_to(&mut self, cpt: Point, pt: Point) {
        if self.current_point.is_none() {
            self.current_point = Some(cpt);
            self.first_point = Some(cpt);
        }
        if let Some(current_point) = self.current_point {
            let curve = [current_point, cpt, pt];
            self.current_point = Some(curve[2]);
            self.add_quad(curve);
        }
    }

    fn add_quad(&mut self, mut curve: [Point; 3]) {
        let a = curve[0].y;
        let b = curve[1].y;
        let c = curve[2].y;
        if is_not_monotonic(a, b, c) {
            let mut t_value = 0.;
            if valid_unit_divide(a - b, a - b - b + c, &mut t_value) {
                let mut dst = [Point::new(0., 0.); 5];
                chop_quad_at(&curve, &mut dst, t_value);
                flatten_double_quad_extrema(&mut dst);
                self.rasterizer.add_edge(dst[0], dst[2], true, dst[1]);
                self.rasterizer.add_edge(dst[2], dst[4], true, dst[3]);
                return;
            }
            // if we get here, we need to force dst to be monotonic, even though
            // we couldn't compute a unit_divide value (probably underflow).
            let b = if abs(a - b) < abs(b - c) { a } else { c };
            curve[1].y = b;
        }
        self.rasterizer.add_edge(curve[0], curve[2], true, curve[1]);
    }

    fn cubic_to(&mut self, cpt1: Point, cpt2: Point, pt: Point) {
        if self.current_point.is_none() {
            self.current_point = Some(cpt1);
            self.first_point = Some(cpt1);
        }
        if let Some(current_point) = self.current_point {
            let c = CubicBezierSegment {
                from: current_point,
                ctrl1: cpt1,
                ctrl2: cpt2,
                to: pt,
            };
            cubic_to_quadratics(&c, 0.01, &mut |q| {
                let curve = [q.from, q.ctrl, q.to];
                self.add_quad(curve);
            });
            self.current_point = Some(pt);
        }
    }

    fn close(&mut self) {
        if let (Some(first_point), Some(current_point)) = (self.first_point, self.current_point) {
            self.rasterizer.add_edge(
                current_point,
                first_point,
                false,
                Point::new(0., 0.),
            );
        }
        self.current_point = self.first_point;
    }

    fn apply_path(&mut self, path: &Path) {
        for op in &path.ops {
            match *op {
                PathOp::MoveTo(pt) => {
                    self.close();
                    self.move_to(self.transform.transform_point(pt));
                },
                PathOp::LineTo(pt) => self.line_to(self.transform.transform_point(pt)),
                PathOp::QuadTo(cpt, pt) => self.quad_to(
                    self.transform.transform_point(cpt),
                    self.transform.transform_point(pt),
                ),
                PathOp::CubicTo(cpt1, cpt2, pt) => self.cubic_to(
                    self.transform.transform_point(cpt1),
                    self.transform.transform_point(cpt2),
                    self.transform.transform_point(pt),
                ),
                PathOp::Close => self.close(),
            }
        }
        // make sure the path is closed
        self.close();
        // XXX: we'd like for this function to return the bounds of the path
    }

    pub fn push_clip_rect(&mut self, rect: IntRect) {
        // intersect with current clip
        let clip = match self.clip_stack.last() {
            Some(Clip {
                     rect: current_clip,
                     mask: _,
                 }) => Clip {
                rect: current_clip.intersection(&rect),
                mask: None,
            },
            _ => Clip {
                rect: rect,
                mask: None,
            },
        };
        self.clip_stack.push(clip);
    }

    pub fn pop_clip(&mut self) {
        self.clip_stack.pop();
    }

    pub fn push_clip(&mut self, path: &Path) {
        self.apply_path(path);

        // XXX: restrict to clipped area
        let mut blitter = MaskSuperBlitter::new(0, 0, self.width, self.height);
        self.rasterizer.rasterize(&mut blitter, path.winding);

        if let Some(last) = self.clip_stack.last() {
            // combine with previous mask
            if let Some(last_mask) = &last.mask {
                for i in 0..((self.width * self.height) as usize) {
                    blitter.buf[i] = muldiv255(blitter.buf[i] as u32, last_mask[i] as u32) as u8
                }
            }
        }

        let current_bounds = self.clip_bounds();
        //XXX: handle interleaving of clip rect/masks better
        self.clip_stack.push(Clip {
            rect: current_bounds,
            mask: Some(blitter.buf),
        });
        self.rasterizer.reset();
    }

    fn clip_bounds(&self) -> IntRect {
        self.clip_stack.last().map(|c| c.rect).unwrap_or(IntRect::new(
            euclid::Point2D::new(0, 0),
            euclid::Point2D::new(self.width, self.height),
        ))
    }

    /// Pushes a new layer as the drawing target. This is used for implementing
    /// group opacity effects.
    pub fn push_layer(&mut self, opacity: f32) {
        self.push_layer_with_blend(opacity, BlendMode::SrcOver)
    }

    /// Pushes a new layer as the drawing target. This is used for implementing
    /// group opacity or blend effects.
    pub fn push_layer_with_blend(&mut self, opacity: f32, blend: BlendMode) {
        let rect = self.clip_bounds();
        self.layer_stack.push(Layer {
            rect,
            buf: vec![0; (rect.size().width * rect.size().height) as usize],
            opacity,
            blend
        });
    }

    /// Draws the most recently pushed layer to the drawing target with
    /// the pushed opacity applied.
    pub fn pop_layer(&mut self) {
        let layer = self.layer_stack.pop().unwrap();
        let opacity = (layer.opacity * 255. + 0.5) as u8;
        // Allocating an entire mask just for the opacity is needlessly bad.
        // We should be able to fix it once the blitters work better.
        let mask = vec![opacity; (self.width * self.height) as usize];
        let size = layer.rect.size();
        let ctm = self.transform;
        self.transform = Transform::identity();
        let image = Source::Image(Image {
            width: size.width,
            height: size.height,
            data: &layer.buf
        },
                                  ExtendMode::Pad,
                                  FilterMode::Nearest,
                                  Transform::create_translation(-layer.rect.min.x as f32,
                                                                -layer.rect.min.y as f32));
        self.composite(&image, Some(&mask), intrect(0, 0, self.width, self.height), layer.rect, layer.blend, 1.);
        self.transform = ctm;
    }

    /// Draws an image at (x, y) with the size (width, height). This will rescale the image to the
    /// destination size.
    pub fn draw_image_with_size_at(&mut self, width: f32, height: f32, x: f32, y: f32, image: &Image, options: &DrawOptions) {
        let source = Source::Image(*image,
                                   ExtendMode::Pad,
                                   FilterMode::Bilinear,
                                   Transform::create_translation(-x, -y).post_scale(image.width as f32 / width, image.height as f32 / height));

        self.fill_rect(x, y, width, height, &source, options);
    }

    /// Draws an image at x, y
    pub fn draw_image_at(&mut self, x: f32, y: f32, image: &Image, options: &DrawOptions) {
        self.draw_image_with_size_at(image.width as f32, image.height as f32, x, y, image, options);
    }

    /// Draws `src` through an untransformed `mask` positioned at `x`, `y` in device space
    pub fn mask(&mut self, src: &Source, x: i32, y: i32, mask: &Mask) {
        self.composite(src, Some(&mask.data), intrect(x, y, mask.width, mask.height), intrect(x, y, mask.width, mask.height), BlendMode::SrcOver, 1.);
    }

    /// Strokes `path` with `style` and fills the result with `src`
    pub fn stroke(&mut self, path: &Path, src: &Source, style: &StrokeStyle, options: &DrawOptions) {
        let tolerance = 0.1;

        // Since we're flattening in userspace, we need to compensate for the transform otherwise
        // we'll flatten too much or not enough depending on the scale. We approximate doing this
        // correctly by scaling the tolerance value using the same mechanism as Fitz. This
        // approximation will fail if the scale between axes is drastically different. An
        // alternative would be to use transform specific flattening but I haven't seen that done
        // anywhere.
        let tolerance = scaled_tolerance(tolerance, &self.transform);
        let mut path = path.flatten(tolerance);

        if !style.dash_array.is_empty() {
            path = dash_path(&path, &style.dash_array, style.dash_offset);
        }
        let stroked = stroke_to_path(&path, style);
        self.fill(&stroked, src, options);
    }

    /// Fills the rect `x`, `y,`, `width`, `height` with `src`. If the result is an
    /// integer aligned rectangle performance will be faster than filling a rectangular path.
    pub fn fill_rect(&mut self, x: f32, y: f32, width: f32, height: f32, src: &Source, options: &DrawOptions) {
        let ix = x as i32;
        let iy = y as i32;
        let iwidth = width as i32;
        let iheight = height as i32;
        let integer_rect = ix as f32 == x        && iy as f32 == y &&
                                iwidth as f32 == width && iheight as f32 == height;

        if self.transform == Transform::identity() && integer_rect && self.clip_stack.is_empty() {
            let bounds = intrect(0, 0, self.width, self.height);
            let mut irect = intrect(ix, iy, ix + iwidth, iy + iheight);
            irect = irect.intersection(&bounds);
            if irect.is_negative() {
                return;
            }
            self.composite(src, None, irect, irect, options.blend_mode, options.alpha);
        } else {
            let mut pb = PathBuilder::new();
            pb.rect(x, y, width, height);
            self.fill(&pb.finish(), src, options);
        }
    }

    /// Fills `path` with `src`
    pub fn fill(&mut self, path: &Path, src: &Source, options: &DrawOptions) {
        self.apply_path(path);
        let bounds = self.rasterizer.get_bounds();
        match options.antialias {
            AntialiasMode::None => {
                let mut blitter = MaskBlitter::new(bounds.min.x, bounds.min.y, bounds.size().width, bounds.size().height);
                self.rasterizer.rasterize(&mut blitter, path.winding);
                self.composite(
                    src,
                    Some(&blitter.buf),
                    bounds,
                    bounds,
                    options.blend_mode,
                    options.alpha,
                );
            }
            AntialiasMode::Gray => {
                let mut blitter = MaskSuperBlitter::new(bounds.min.x, bounds.min.y, bounds.size().width, bounds.size().height);
                self.rasterizer.rasterize(&mut blitter, path.winding);
                self.composite(
                    src,
                    Some(&blitter.buf),
                    bounds,
                    bounds,
                    options.blend_mode,
                    options.alpha,
                );
            }
        }
        self.rasterizer.reset();
    }

    /// Fills the current clip with the solid color `solid`
    pub fn clear(&mut self, solid: SolidSource) {
        let mut pb = PathBuilder::new();
        if self.clip_stack.is_empty() {
            let color = solid.to_u32();
            for pixel in &mut self.buf[..] {
                *pixel = color;
            }
        } else {
            let ctm = self.transform;
            self.transform = Transform::identity();
            pb.rect(0., 0., self.width as f32, self.height as f32);
            self.fill(
                &pb.finish(),
                &Source::Solid(solid),
                &DrawOptions {
                    blend_mode: BlendMode::Src,
                    alpha: 1.,
                    antialias: AntialiasMode::Gray,
                },
            );
            self.transform = ctm;
        }
    }

    #[cfg(feature = "text")]
    pub fn draw_text(
        &mut self,
        font: &fk::Font,
        point_size: f32,
        text: &str,
        mut start: Point,
        src: &Source,
        options: &DrawOptions,
    ) {
        let mut ids = Vec::new();
        let mut positions = Vec::new();
        for c in text.chars() {
            let id = font.glyph_for_char(c).unwrap();
            ids.push(id);
            positions.push(start);
            start += font.advance(id).unwrap() * point_size / 24. / 96.;
        }
        self.draw_glyphs(font, point_size, &ids, &positions, src, options);
    }

    #[cfg(feature = "text")]
    pub fn draw_glyphs(
        &mut self,
        font: &fk::Font,
        point_size: f32,
        ids: &[u32],
        positions: &[Point],
        src: &Source,
        options: &DrawOptions,
    ) {
        let mut combined_bounds = euclid::Rect::zero();
        for (id, position) in ids.iter().zip(positions.iter()) {
            let bounds = font.raster_bounds(
                *id,
                point_size,
                &fk::FontTransform::new(self.transform.m11, self.transform.m21, self.transform.m12, self.transform.m22),
                &(self.transform.transform_point(*position)),
                fk::HintingOptions::None,
                fk::RasterizationOptions::GrayscaleAa,
            );
            combined_bounds = match bounds {
                Ok(bounds) => {
                    combined_bounds.union(&bounds)
                }
                _ => panic!(),
            }
        }

        /*let mut canvas = Canvas::new(&euclid::Size2D::new(combined_bounds.size.width as u32,
        combined_bounds.size.height as u32), Format::A8);*/
        let mut canvas = fk::Canvas::new(
            &euclid::Size2D::new(combined_bounds.size.width as u32, combined_bounds.size.height as u32),
            fk::Format::A8,
        );
        for (id, position) in ids.iter().zip(positions.iter()) {
            let mut position = self.transform.transform_point(*position);
            position.x -= combined_bounds.origin.x as f32;
            position.y -= combined_bounds.origin.y as f32;
            font.rasterize_glyph(
                &mut canvas,
                *id,
                point_size,
                &fk::FontTransform::new(self.transform.m11, self.transform.m21, self.transform.m12, self.transform.m22),
                &position,
                fk::HintingOptions::None,
                fk::RasterizationOptions::GrayscaleAa,
            ).unwrap();
        }

        self.composite(
            src,
            Some(&canvas.pixels),
            combined_bounds.to_box2d(),
            combined_bounds.to_box2d(),
            options.blend_mode,
            1.,
        );
    }




    fn choose_blitter<'a, 'b, 'c>(mask: Option<&[u8]>, clip_stack: &'a Vec<Clip>, blitter_storage: &'b mut ShaderBlitterStorage<'a>, shader: &'a dyn Shader, blend: BlendMode, dest: &'a mut [u32], dest_bounds: IntRect, width: i32) -> &'b mut dyn Blitter {
        let blitter: &mut dyn Blitter;

        match (mask, clip_stack.last()) {
            (Some(_mask), Some(Clip {
                        rect: _,
                        mask: Some(clip),
                    })) => {
                if blend == BlendMode::SrcOver {
                    let scb = ShaderClipMaskBlitter {
                        x: dest_bounds.min.x,
                        y: dest_bounds.min.y,
                        shader: shader,
                        tmp: vec![0; width as usize],
                        dest,
                        dest_stride: dest_bounds.size().width,
                        clip,
                        clip_stride: width,
                    };
                    *blitter_storage = ShaderBlitterStorage::ShaderClipMaskBlitter(scb);
                    blitter = match blitter_storage { ShaderBlitterStorage::ShaderClipMaskBlitter(s) => s, _ => panic!() };
                } else {
                    let blend_fn = build_blend_proc::<BlendRowMaskClip>(blend);
                    let scb_blend = ShaderClipBlendMaskBlitter {
                        x: dest_bounds.min.x,
                        y: dest_bounds.min.y,
                        shader: shader,
                        tmp: vec![0; width as usize],
                        dest,
                        dest_stride: dest_bounds.size().width,
                        clip,
                        clip_stride: width,
                        blend_fn
                    };

                    *blitter_storage = ShaderBlitterStorage::ShaderClipBlendMaskBlitter(scb_blend);
                    blitter = match blitter_storage {
                        ShaderBlitterStorage::ShaderClipBlendMaskBlitter(s) => s,
                        _ => panic!()
                    };
                }
            }
            (Some(_mask), _) => {
                if blend == BlendMode::SrcOver {
                    let sb = ShaderMaskBlitter {
                        x: dest_bounds.min.x,
                        y: dest_bounds.min.y,
                        shader: &*shader,
                        tmp: vec![0; width as usize],
                        dest,
                        dest_stride: dest_bounds.size().width,
                    };
                    *blitter_storage = ShaderBlitterStorage::ShaderMaskBlitter(sb);
                    blitter = match blitter_storage { ShaderBlitterStorage::ShaderMaskBlitter(s) => s, _ => panic!() };
                } else {
                    let blend_fn = build_blend_proc::<BlendRowMask>(blend);
                    let sb_blend = ShaderBlendMaskBlitter {
                        x: dest_bounds.min.x,
                        y: dest_bounds.min.y,
                        shader: &*shader,
                        tmp: vec![0; width as usize],
                        dest,
                        dest_stride: dest_bounds.size().width,
                        blend_fn,
                    };
                    *blitter_storage = ShaderBlitterStorage::ShaderBlendMaskBlitter(sb_blend);
                    blitter = match blitter_storage {
                        ShaderBlitterStorage::ShaderBlendMaskBlitter(s) => s,
                        _ => panic!()
                    };
                }
            }
            (None, _) => {
                let blend_fn = build_blend_proc::<BlendRow>(blend);
                let sb_blend = ShaderBlendBlitter {
                    x: dest_bounds.min.x,
                    y: dest_bounds.min.y,
                    shader: &*shader,
                    tmp: vec![0; width as usize],
                    dest,
                    dest_stride: dest_bounds.size().width,
                    blend_fn,
                };
                *blitter_storage = ShaderBlitterStorage::ShaderBlendBlitter(sb_blend);
                blitter = match blitter_storage {
                    ShaderBlitterStorage::ShaderBlendBlitter(s) => s,
                    _ => panic!()
                };
            }
        }
        blitter
    }

    /// `mask_rect` is in DrawTarget space. i.e size is the size of the mask and origin is the position.
    /// you can not render a part of the mask
    fn composite(&mut self, src: &Source, mask: Option<&[u8]>, mask_rect: IntRect, mut rect: IntRect, blend: BlendMode, alpha: f32) {
        let ti = self.transform.inverse();
        let ti = if let Some(ti) = ti {
            ti
        } else {
            // the transform is not invertible so we have nothing to draw
            return;
        };

        let clip_bounds = self.clip_bounds();

        let (dest, dest_bounds) = match self.layer_stack.last_mut() {
            Some(layer) => (&mut layer.buf[..], layer.rect),
            None => (&mut self.buf[..], intrect(0, 0, self.width, self.height))
        };

        rect = rect
            .intersection(&clip_bounds)
            .intersection(&dest_bounds)
            .intersection(&mask_rect);
        if rect.is_negative() {
            return;
        }

        let mut shader_storage: ShaderStorage = ShaderStorage::None;
        let shader = choose_shader(&ti, src, alpha, &mut shader_storage);

        let mut blitter_storage: ShaderBlitterStorage = ShaderBlitterStorage::None;
        let blitter = DrawTarget::choose_blitter(mask, &self.clip_stack, &mut blitter_storage, shader, blend, dest, dest_bounds, self.width);

        match mask {
            Some(mask) => {
                for y in rect.min.y..rect.max.y {
                    let mask_row = (y - mask_rect.min.y) * mask_rect.size().width;
                    let mask_start = (mask_row + rect.min.x - mask_rect.min.x) as usize;
                    let mask_end = (mask_row + rect.max.x - mask_rect.min.x) as usize;
                    blitter.blit_span(y, rect.min.x, rect.max.x, &mask[mask_start..mask_end]);
                }
            }
            None => {
                for y in rect.min.y..rect.max.y {
                    let empty_mask = [];
                    blitter.blit_span(y, rect.min.x, rect.max.x, &empty_mask[..]);
                }
            }
        };
    }

    /// Draws `src_rect` of `src` at `dst`. The current transform and clip are ignored
    pub fn composite_surface<F: Fn(&[u32], &mut [u32])>(&mut self, src: &DrawTarget, src_rect: IntRect, dst: IntPoint, f: F) {
        let dst_rect = intrect(0, 0, self.width, self.height);

        // intersect the src_rect with the source size so that we don't go out of bounds
        let src_rect = src_rect.intersection(&intrect(0, 0, src.width, src.height));

        let src_rect = dst_rect
            .intersection(&src_rect.translate(dst.to_vector())).translate(-dst.to_vector());

        // clamp requires Float so open code it
        let dst = IntPoint::new(dst.x.max(dst_rect.min.x).min(dst_rect.max.x),
                                dst.y.max(dst_rect.min.y).min(dst_rect.max.y));

        if src_rect.is_negative() {
            return;
        }

        for y in src_rect.min.y..src_rect.max.y {
            let dst_row_start = (dst.x + (dst.y + y - src_rect.min.y) * self.width) as usize;
            let dst_row_end = dst_row_start + src_rect.size().width as usize;
            let src_row_start = (src_rect.min.x + y * src.width) as usize;
            let src_row_end = src_row_start + src_rect.size().width as usize;
            f(&src.buf[src_row_start..src_row_end], &mut self.buf[dst_row_start..dst_row_end]);
        }
    }

    /// Draws `src_rect` of `src` at `dst`. The current transform and clip are ignored.
    /// `src_rect` is clamped to (0, 0, src.width, src.height).
    pub fn copy_surface(&mut self, src: &DrawTarget, src_rect: IntRect, dst: IntPoint) {
        self.composite_surface(src, src_rect, dst, |src, dst| {
            dst.copy_from_slice(src)
        })
    }

    /// Blends `src_rect` of `src` at `dst`using `blend` mode.
    /// The current transform and clip are ignored.
    /// `src_rect` is clamped to (0, 0, `src.width`, `src.height`).
    pub fn blend_surface(&mut self, src: &DrawTarget, src_rect: IntRect, dst: IntPoint, blend: BlendMode) {
        let blend_fn = build_blend_proc::<BlendRow>(blend);
        self.composite_surface(src, src_rect, dst, |src, dst| {
            blend_fn(src, dst);
        });
    }

    /// Blends `src_rect` of `src` at `dst` using `alpha`. The current transform and clip are ignored.
    /// `src_rect` is clamped to (0, 0, `src.width`, `src.height`).
    pub fn blend_surface_with_alpha(&mut self, src: &DrawTarget, src_rect: IntRect, dst: IntPoint, alpha: f32) {
        let alpha = (alpha * 255. + 0.5) as u8;

        self.composite_surface(src, src_rect, dst, |src, dst| {
            over_in_row(src, dst, alpha as u32);
        });
    }

    /// Returns a reference to the underlying pixel data
    pub fn get_data(&self) -> &[u32] {
        &self.buf
    }

    /// Returns a mut reference to the underlying pixel data as ARGB with a representation
    /// like: (A << 24) | (R << 16) | (G << 8) | B
    pub fn get_data_mut(&mut self) -> &mut [u32] {
        &mut self.buf
    }

    /// Returns a reference to the underlying pixel data as individual bytes with the order BGRA
    /// on little endian.
    pub fn get_data_u8(&self) -> &[u8] {
        let p = self.buf[..].as_ptr();
        let len = self.buf[..].len();
        // we want to return an [u8] slice instead of a [u32] slice. This is a safe thing to
        // do because requirements of a [u32] slice are stricter.
        unsafe { std::slice::from_raw_parts(p as *const u8, len * std::mem::size_of::<u32>()) }
    }

    /// Returns a mut reference to the underlying pixel data as individual bytes with the order BGRA
    /// on little endian.
    pub fn get_data_u8_mut(&mut self) -> &mut [u8] {
        let p = self.buf[..].as_mut_ptr();
        let len = self.buf[..].len();
        // we want to return an [u8] slice instead of a [u32] slice. This is a safe thing to
        // do because requirements of a [u32] slice are stricter.
        unsafe { std::slice::from_raw_parts_mut(p as *mut u8, len * std::mem::size_of::<u32>()) }
    }

    /// Take ownership of the buffer backing the DrawTarget
    pub fn into_vec(self) -> Vec<u32> {
        self.buf
    }


    /// Saves the current pixel to a png file at `path`
    pub fn write_png<P: AsRef<std::path::Path>>(&self, path: P) -> Result<(), png::EncodingError> {
        let file = File::create(path)?;

        let ref mut w = BufWriter::new(file);

        let mut encoder = png::Encoder::new(w, self.width as u32, self.height as u32);
        encoder.set_color(png::ColorType::RGBA);
        encoder.set_depth(png::BitDepth::Eight);
        let mut writer = encoder.write_header()?;
        let mut output = Vec::with_capacity(self.buf.len() * 4);

        for pixel in &self.buf {
            let a = (pixel >> 24) & 0xffu32;
            let mut r = (pixel >> 16) & 0xffu32;
            let mut g = (pixel >> 8) & 0xffu32;
            let mut b = (pixel >> 0) & 0xffu32;

            if a > 0u32 {
                r = r * 255u32 / a;
                g = g * 255u32 / a;
                b = b * 255u32 / a;
            }

            output.push(r as u8);
            output.push(g as u8);
            output.push(b as u8);
            output.push(a as u8);
        }

        writer.write_image_data(&output)
    }
}