1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
use crate::math::{AngVector, AngularInertia, Isometry, Point, Rotation, Vector};
use crate::utils;
use num::Zero;
use std::ops::{Add, AddAssign, Sub, SubAssign};
#[cfg(feature = "dim3")]
use {na::Matrix3, std::ops::MulAssign};

#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// The local mass properties of a rigid-body.
pub struct MassProperties {
    /// The center of mass of a rigid-body expressed in its local-space.
    pub local_com: Point<f32>,
    /// The inverse of the mass of a rigid-body.
    ///
    /// If this is zero, the rigid-body is assumed to have infinite mass.
    pub inv_mass: f32,
    /// The inverse of the principal angular inertia of the rigid-body.
    ///
    /// Components set to zero are assumed to be infinite along the corresponding principal axis.
    pub inv_principal_inertia_sqrt: AngVector<f32>,
    #[cfg(feature = "dim3")]
    /// The principal vectors of the local angular inertia tensor of the rigid-body.
    pub principal_inertia_local_frame: Rotation<f32>,
}

impl MassProperties {
    /// Initializes the mass properties with the given center-of-mass, mass, and angular inertia.
    ///
    /// The center-of-mass is specified in the local-space of the rigid-body.
    #[cfg(feature = "dim2")]
    pub fn new(local_com: Point<f32>, mass: f32, principal_inertia: f32) -> Self {
        let inv_mass = utils::inv(mass);
        let inv_principal_inertia_sqrt = utils::inv(principal_inertia.sqrt());
        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
        }
    }

    /// Initializes the mass properties from the given center-of-mass, mass, and principal angular inertia.
    ///
    /// The center-of-mass is specified in the local-space of the rigid-body.
    /// The principal angular inertia are the angular inertia along the coordinate axes in the local-space
    /// of the rigid-body.
    #[cfg(feature = "dim3")]
    pub fn new(local_com: Point<f32>, mass: f32, principal_inertia: AngVector<f32>) -> Self {
        Self::with_principal_inertia_frame(local_com, mass, principal_inertia, Rotation::identity())
    }

    /// Initializes the mass properties from the given center-of-mass, mass, and principal angular inertia.
    ///
    /// The center-of-mass is specified in the local-space of the rigid-body.
    /// The principal angular inertia are the angular inertia along the coordinate axes defined by
    /// the `principal_inertia_local_frame` expressed in the local-space of the rigid-body.
    #[cfg(feature = "dim3")]
    pub fn with_principal_inertia_frame(
        local_com: Point<f32>,
        mass: f32,
        principal_inertia: AngVector<f32>,
        principal_inertia_local_frame: Rotation<f32>,
    ) -> Self {
        let inv_mass = utils::inv(mass);
        let inv_principal_inertia_sqrt = principal_inertia.map(|e| utils::inv(e.sqrt()));
        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
            principal_inertia_local_frame,
        }
    }

    /// The world-space center of mass of the rigid-body.
    pub fn world_com(&self, pos: &Isometry<f32>) -> Point<f32> {
        pos * self.local_com
    }

    #[cfg(feature = "dim2")]
    /// The world-space inverse angular inertia tensor of the rigid-body.
    pub fn world_inv_inertia_sqrt(&self, _rot: &Rotation<f32>) -> AngularInertia<f32> {
        self.inv_principal_inertia_sqrt
    }

    #[cfg(feature = "dim3")]
    /// The world-space inverse angular inertia tensor of the rigid-body.
    pub fn world_inv_inertia_sqrt(&self, rot: &Rotation<f32>) -> AngularInertia<f32> {
        if !self.inv_principal_inertia_sqrt.is_zero() {
            let mut lhs = (rot * self.principal_inertia_local_frame)
                .to_rotation_matrix()
                .into_inner();
            let rhs = lhs.transpose();
            lhs.column_mut(0)
                .mul_assign(self.inv_principal_inertia_sqrt.x);
            lhs.column_mut(1)
                .mul_assign(self.inv_principal_inertia_sqrt.y);
            lhs.column_mut(2)
                .mul_assign(self.inv_principal_inertia_sqrt.z);
            let inertia = lhs * rhs;
            AngularInertia::from_sdp_matrix(inertia)
        } else {
            AngularInertia::zero()
        }
    }

    #[cfg(feature = "dim3")]
    /// Reconstructs the inverse angular inertia tensor of the rigid body from its principal inertia values and axes.
    pub fn reconstruct_inverse_inertia_matrix(&self) -> Matrix3<f32> {
        let inv_principal_inertia = self.inv_principal_inertia_sqrt.map(|e| e * e);
        self.principal_inertia_local_frame.to_rotation_matrix()
            * Matrix3::from_diagonal(&inv_principal_inertia)
            * self
                .principal_inertia_local_frame
                .inverse()
                .to_rotation_matrix()
    }

    #[cfg(feature = "dim3")]
    /// Reconstructs the angular inertia tensor of the rigid body from its principal inertia values and axes.
    pub fn reconstruct_inertia_matrix(&self) -> Matrix3<f32> {
        let principal_inertia = self.inv_principal_inertia_sqrt.map(|e| utils::inv(e * e));
        self.principal_inertia_local_frame.to_rotation_matrix()
            * Matrix3::from_diagonal(&principal_inertia)
            * self
                .principal_inertia_local_frame
                .inverse()
                .to_rotation_matrix()
    }

    #[cfg(feature = "dim2")]
    pub(crate) fn construct_shifted_inertia_matrix(&self, shift: Vector<f32>) -> f32 {
        let i = utils::inv(self.inv_principal_inertia_sqrt * self.inv_principal_inertia_sqrt);

        if self.inv_mass != 0.0 {
            let mass = 1.0 / self.inv_mass;
            i + shift.norm_squared() * mass
        } else {
            i
        }
    }

    #[cfg(feature = "dim3")]
    pub(crate) fn construct_shifted_inertia_matrix(&self, shift: Vector<f32>) -> Matrix3<f32> {
        let matrix = self.reconstruct_inertia_matrix();

        if self.inv_mass != 0.0 {
            let mass = 1.0 / self.inv_mass;
            let diag = shift.norm_squared();
            let diagm = Matrix3::from_diagonal_element(diag);
            matrix + (diagm + shift * shift.transpose()) * mass
        } else {
            matrix
        }
    }

    /// Transform each element of the mass properties.
    pub fn transform_by(&self, m: &Isometry<f32>) -> Self {
        // NOTE: we don't apply the parallel axis theorem here
        // because the center of mass is also transformed.
        Self {
            local_com: m * self.local_com,
            inv_mass: self.inv_mass,
            inv_principal_inertia_sqrt: self.inv_principal_inertia_sqrt,
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: m.rotation * self.principal_inertia_local_frame,
        }
    }
}

impl Zero for MassProperties {
    fn zero() -> Self {
        Self {
            inv_mass: 0.0,
            inv_principal_inertia_sqrt: na::zero(),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
            local_com: Point::origin(),
        }
    }

    fn is_zero(&self) -> bool {
        *self == Self::zero()
    }
}

impl Sub<MassProperties> for MassProperties {
    type Output = Self;

    #[cfg(feature = "dim2")]
    fn sub(self, other: MassProperties) -> Self {
        if self.is_zero() || other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let inv_mass = utils::inv(m1 - m2);

        let local_com = (self.local_com * m1 - other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 - i2;
        // NOTE: we drop the negative eigenvalues that may result from subtraction rounding errors.
        let inv_principal_inertia_sqrt = utils::inv(inertia.max(0.0).sqrt());

        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
        }
    }

    #[cfg(feature = "dim3")]
    fn sub(self, other: MassProperties) -> Self {
        if self.is_zero() || other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let inv_mass = utils::inv(m1 - m2);
        let local_com = (self.local_com * m1 - other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 - i2;
        let eigen = inertia.symmetric_eigen();
        let principal_inertia_local_frame =
            Rotation::from_matrix_eps(&eigen.eigenvectors, 1.0e-6, 10, na::one());
        let principal_inertia = eigen.eigenvalues;
        // NOTE: we drop the negative eigenvalues that may result from subtraction rounding errors.
        let inv_principal_inertia_sqrt = principal_inertia.map(|e| utils::inv(e.max(0.0).sqrt()));

        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
            principal_inertia_local_frame,
        }
    }
}

impl SubAssign<MassProperties> for MassProperties {
    fn sub_assign(&mut self, rhs: MassProperties) {
        *self = *self - rhs
    }
}

impl Add<MassProperties> for MassProperties {
    type Output = Self;

    #[cfg(feature = "dim2")]
    fn add(self, other: MassProperties) -> Self {
        if self.is_zero() {
            return other;
        } else if other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let inv_mass = utils::inv(m1 + m2);
        let local_com = (self.local_com * m1 + other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 + i2;
        let inv_principal_inertia_sqrt = utils::inv(inertia.sqrt());

        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
        }
    }

    #[cfg(feature = "dim3")]
    fn add(self, other: MassProperties) -> Self {
        if self.is_zero() {
            return other;
        } else if other.is_zero() {
            return self;
        }

        let m1 = utils::inv(self.inv_mass);
        let m2 = utils::inv(other.inv_mass);
        let inv_mass = utils::inv(m1 + m2);
        let local_com = (self.local_com * m1 + other.local_com.coords * m2) * inv_mass;
        let i1 = self.construct_shifted_inertia_matrix(local_com - self.local_com);
        let i2 = other.construct_shifted_inertia_matrix(local_com - other.local_com);
        let inertia = i1 + i2;
        let eigen = inertia.symmetric_eigen();
        let principal_inertia_local_frame =
            Rotation::from_matrix_eps(&eigen.eigenvectors, 1.0e-6, 10, na::one());
        let principal_inertia = eigen.eigenvalues;
        let inv_principal_inertia_sqrt = principal_inertia.map(|e| utils::inv(e.sqrt()));

        Self {
            local_com,
            inv_mass,
            inv_principal_inertia_sqrt,
            principal_inertia_local_frame,
        }
    }
}

impl AddAssign<MassProperties> for MassProperties {
    fn add_assign(&mut self, rhs: MassProperties) {
        *self = *self + rhs
    }
}

impl approx::AbsDiffEq for MassProperties {
    type Epsilon = f32;
    fn default_epsilon() -> Self::Epsilon {
        f32::default_epsilon()
    }

    fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
        #[cfg(feature = "dim2")]
        let inertia_is_ok = self
            .inv_principal_inertia_sqrt
            .abs_diff_eq(&other.inv_principal_inertia_sqrt, epsilon);

        #[cfg(feature = "dim3")]
        let inertia_is_ok = self
            .reconstruct_inverse_inertia_matrix()
            .abs_diff_eq(&other.reconstruct_inverse_inertia_matrix(), epsilon);

        inertia_is_ok
            && self.local_com.abs_diff_eq(&other.local_com, epsilon)
            && self.inv_mass.abs_diff_eq(&other.inv_mass, epsilon)
            && self
                .inv_principal_inertia_sqrt
                .abs_diff_eq(&other.inv_principal_inertia_sqrt, epsilon)
    }
}

impl approx::RelativeEq for MassProperties {
    fn default_max_relative() -> Self::Epsilon {
        f32::default_max_relative()
    }

    fn relative_eq(
        &self,
        other: &Self,
        epsilon: Self::Epsilon,
        max_relative: Self::Epsilon,
    ) -> bool {
        #[cfg(feature = "dim2")]
        let inertia_is_ok = self.inv_principal_inertia_sqrt.relative_eq(
            &other.inv_principal_inertia_sqrt,
            epsilon,
            max_relative,
        );

        #[cfg(feature = "dim3")]
        let inertia_is_ok = self.reconstruct_inverse_inertia_matrix().relative_eq(
            &other.reconstruct_inverse_inertia_matrix(),
            epsilon,
            max_relative,
        );

        inertia_is_ok
            && self
                .local_com
                .relative_eq(&other.local_com, epsilon, max_relative)
            && self
                .inv_mass
                .relative_eq(&other.inv_mass, epsilon, max_relative)
    }
}

#[cfg(test)]
mod test {
    use super::MassProperties;
    use crate::geometry::ColliderBuilder;
    use crate::math::{Point, Rotation, Vector};
    use approx::assert_relative_eq;
    use num::Zero;

    #[test]
    fn mass_properties_add_partial_zero() {
        let m1 = MassProperties {
            local_com: Point::origin(),
            inv_mass: 2.0,
            inv_principal_inertia_sqrt: na::zero(),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
        };
        let m2 = MassProperties {
            local_com: Point::origin(),
            inv_mass: 0.0,
            #[cfg(feature = "dim2")]
            inv_principal_inertia_sqrt: 1.0,
            #[cfg(feature = "dim3")]
            inv_principal_inertia_sqrt: Vector::new(1.0, 2.0, 3.0),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
        };
        let result = MassProperties {
            local_com: Point::origin(),
            inv_mass: 2.0,
            #[cfg(feature = "dim2")]
            inv_principal_inertia_sqrt: 1.0,
            #[cfg(feature = "dim3")]
            inv_principal_inertia_sqrt: Vector::new(1.0, 2.0, 3.0),
            #[cfg(feature = "dim3")]
            principal_inertia_local_frame: Rotation::identity(),
        };

        assert_eq!(m1 + m2, result);
        assert_eq!(m2 + m1, result);
    }

    #[test]
    fn mass_properties_add_sub() {
        // Check that addition and subtraction of mass properties behave as expected.
        let c1 = ColliderBuilder::capsule_x(1.0, 2.0).build();
        let c2 = ColliderBuilder::capsule_y(3.0, 4.0).build();
        let c3 = ColliderBuilder::ball(5.0).build();

        let m1 = c1.mass_properties();
        let m2 = c2.mass_properties();
        let m3 = c3.mass_properties();
        let m1m2m3 = m1 + m2 + m3;

        assert_relative_eq!(m1 + m2, m2 + m1, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m1, m2 + m3, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m2, m1 + m3, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m3, m1 + m2, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - (m1 + m2), m3, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - (m1 + m3), m2, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - (m2 + m3), m1, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m1 - m2, m3, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m1 - m3, m2, epsilon = 1.0e-6);
        assert_relative_eq!(m1m2m3 - m2 - m3, m1, epsilon = 1.0e-6);
        assert_relative_eq!(
            m1m2m3 - m1 - m2 - m3,
            MassProperties::zero(),
            epsilon = 1.0e-6
        );
    }
}