1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
use crate::dynamics::MassProperties;
use crate::geometry::{
    ColliderChanges, ColliderHandle, ColliderMassProps, ColliderParent, ColliderPosition,
    ColliderSet, ColliderShape,
};
use crate::math::{
    AngVector, AngularInertia, Isometry, Point, Real, Rotation, Translation, Vector,
};
use crate::parry::partitioning::IndexedData;
use crate::utils::{WAngularInertia, WCross, WDot};
use num::Zero;

/// The unique handle of a rigid body added to a `RigidBodySet`.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, Default)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[repr(transparent)]
pub struct RigidBodyHandle(pub crate::data::arena::Index);

impl RigidBodyHandle {
    /// Converts this handle into its (index, generation) components.
    pub fn into_raw_parts(self) -> (u32, u32) {
        self.0.into_raw_parts()
    }

    /// Reconstructs an handle from its (index, generation) components.
    pub fn from_raw_parts(id: u32, generation: u32) -> Self {
        Self(crate::data::arena::Index::from_raw_parts(id, generation))
    }

    /// An always-invalid rigid-body handle.
    pub fn invalid() -> Self {
        Self(crate::data::arena::Index::from_raw_parts(
            crate::INVALID_U32,
            crate::INVALID_U32,
        ))
    }
}

impl IndexedData for RigidBodyHandle {
    fn default() -> Self {
        Self(IndexedData::default())
    }

    fn index(&self) -> usize {
        self.0.index()
    }
}

/// The type of a body, governing the way it is affected by external forces.
#[deprecated(note = "renamed as RigidBodyType")]
pub type BodyStatus = RigidBodyType;

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// The status of a body, governing the way it is affected by external forces.
pub enum RigidBodyType {
    /// A `RigidBodyType::Dynamic` body can be affected by all external forces.
    Dynamic = 0,
    /// A `RigidBodyType::Fixed` body cannot be affected by external forces.
    Fixed = 1,
    /// A `RigidBodyType::KinematicPositionBased` body cannot be affected by any external forces but can be controlled
    /// by the user at the position level while keeping realistic one-way interaction with dynamic bodies.
    ///
    /// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
    /// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
    /// modified by the user and is independent from any contact or joint it is involved in.
    KinematicPositionBased = 2,
    /// A `RigidBodyType::KinematicVelocityBased` body cannot be affected by any external forces but can be controlled
    /// by the user at the velocity level while keeping realistic one-way interaction with dynamic bodies.
    ///
    /// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
    /// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
    /// modified by the user and is independent from any contact or joint it is involved in.
    KinematicVelocityBased = 3,
    // Semikinematic, // A kinematic that performs automatic CCD with the fixed environment to avoid traversing it?
    // Disabled,
}

impl RigidBodyType {
    /// Is this rigid-body fixed (i.e. cannot move)?
    pub fn is_fixed(self) -> bool {
        self == RigidBodyType::Fixed
    }

    /// Is this rigid-body dynamic (i.e. can move and be affected by forces)?
    pub fn is_dynamic(self) -> bool {
        self == RigidBodyType::Dynamic
    }

    /// Is this rigid-body kinematic (i.e. can move but is unaffected by forces)?
    pub fn is_kinematic(self) -> bool {
        self == RigidBodyType::KinematicPositionBased
            || self == RigidBodyType::KinematicVelocityBased
    }
}

bitflags::bitflags! {
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    /// Flags describing how the rigid-body has been modified by the user.
    pub struct RigidBodyChanges: u32 {
        /// Flag indicating that any component of this rigid-body has been modified.
        const MODIFIED    = 1 << 0;
        /// Flag indicating that the `RigidBodyPosition` component of this rigid-body has been modified.
        const POSITION    = 1 << 1;
        /// Flag indicating that the `RigidBodyActivation` component of this rigid-body has been modified.
        const SLEEP       = 1 << 2;
        /// Flag indicating that the `RigidBodyColliders` component of this rigid-body has been modified.
        const COLLIDERS   = 1 << 3;
        /// Flag indicating that the `RigidBodyType` component of this rigid-body has been modified.
        const TYPE        = 1 << 4;
        /// Flag indicating that the `RigidBodyDominance` component of this rigid-body has been modified.
        const DOMINANCE   = 1 << 5;
    }
}

impl Default for RigidBodyChanges {
    fn default() -> Self {
        RigidBodyChanges::empty()
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// The position of this rigid-body.
pub struct RigidBodyPosition {
    /// The world-space position of the rigid-body.
    pub position: Isometry<Real>,
    /// The next position of the rigid-body.
    ///
    /// At the beginning of the timestep, and when the
    /// timestep is complete we must have position == next_position
    /// except for kinematic bodies.
    ///
    /// The next_position is updated after the velocity and position
    /// resolution. Then it is either validated (ie. we set position := set_position)
    /// or clamped by CCD.
    pub next_position: Isometry<Real>,
}

impl Default for RigidBodyPosition {
    fn default() -> Self {
        Self {
            position: Isometry::identity(),
            next_position: Isometry::identity(),
        }
    }
}

impl RigidBodyPosition {
    /// Computes the velocity need to travel from `self.position` to `self.next_position` in
    /// a time equal to `1.0 / inv_dt`.
    #[must_use]
    pub fn interpolate_velocity(&self, inv_dt: Real, local_com: &Point<Real>) -> RigidBodyVelocity {
        let com = self.position * local_com;
        let shift = Translation::from(com.coords);
        let dpos = shift.inverse() * self.next_position * self.position.inverse() * shift;

        let angvel;
        #[cfg(feature = "dim2")]
        {
            angvel = dpos.rotation.angle() * inv_dt;
        }
        #[cfg(feature = "dim3")]
        {
            angvel = dpos.rotation.scaled_axis() * inv_dt;
        }
        let linvel = dpos.translation.vector * inv_dt;

        RigidBodyVelocity { linvel, angvel }
    }

    /// Compute new positions after integrating the given forces and velocities.
    ///
    /// This uses a symplectic Euler integration scheme.
    #[must_use]
    pub fn integrate_forces_and_velocities(
        &self,
        dt: Real,
        forces: &RigidBodyForces,
        vels: &RigidBodyVelocity,
        mprops: &RigidBodyMassProps,
    ) -> Isometry<Real> {
        let new_vels = forces.integrate(dt, vels, mprops);
        new_vels.integrate(dt, &self.position, &mprops.local_mprops.local_com)
    }
}

impl<T> From<T> for RigidBodyPosition
where
    Isometry<Real>: From<T>,
{
    fn from(position: T) -> Self {
        let position = position.into();
        Self {
            position,
            next_position: position,
        }
    }
}

bitflags::bitflags! {
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    /// Flags affecting the behavior of the constraints solver for a given contact manifold.
    // FIXME: rename this to LockedAxes
    pub struct LockedAxes: u8 {
        /// Flag indicating that the rigid-body cannot translate along the `X` axis.
        const TRANSLATION_LOCKED_X = 1 << 0;
        /// Flag indicating that the rigid-body cannot translate along the `Y` axis.
        const TRANSLATION_LOCKED_Y = 1 << 1;
        /// Flag indicating that the rigid-body cannot translate along the `Z` axis.
        const TRANSLATION_LOCKED_Z = 1 << 2;
        /// Flag indicating that the rigid-body cannot translate along any direction.
        const TRANSLATION_LOCKED = Self::TRANSLATION_LOCKED_X.bits | Self::TRANSLATION_LOCKED_Y.bits | Self::TRANSLATION_LOCKED_Z.bits;
        /// Flag indicating that the rigid-body cannot rotate along the `X` axis.
        const ROTATION_LOCKED_X = 1 << 3;
        /// Flag indicating that the rigid-body cannot rotate along the `Y` axis.
        const ROTATION_LOCKED_Y = 1 << 4;
        /// Flag indicating that the rigid-body cannot rotate along the `Z` axis.
        const ROTATION_LOCKED_Z = 1 << 5;
        /// Combination of flags indicating that the rigid-body cannot rotate along any axis.
        const ROTATION_LOCKED = Self::ROTATION_LOCKED_X.bits | Self::ROTATION_LOCKED_Y.bits | Self::ROTATION_LOCKED_Z.bits;
    }
}

// TODO: split this into "LocalMassProps" and `WorldMassProps"?
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, PartialEq)]
/// The mass properties of this rigid-bodies.
pub struct RigidBodyMassProps {
    /// Flags for locking rotation and translation.
    pub flags: LockedAxes,
    /// The local mass properties of the rigid-body.
    pub local_mprops: MassProperties,
    /// Mass-properties of this rigid-bodies, added to the contributions of its attached colliders.
    pub additional_local_mprops: Option<Box<MassProperties>>,
    /// The world-space center of mass of the rigid-body.
    pub world_com: Point<Real>,
    /// The inverse mass taking into account translation locking.
    pub effective_inv_mass: Vector<Real>,
    /// The square-root of the world-space inverse angular inertia tensor of the rigid-body,
    /// taking into account rotation locking.
    pub effective_world_inv_inertia_sqrt: AngularInertia<Real>,
}

impl Default for RigidBodyMassProps {
    fn default() -> Self {
        Self {
            flags: LockedAxes::empty(),
            local_mprops: MassProperties::zero(),
            additional_local_mprops: None,
            world_com: Point::origin(),
            effective_inv_mass: Vector::zero(),
            effective_world_inv_inertia_sqrt: AngularInertia::zero(),
        }
    }
}

impl From<LockedAxes> for RigidBodyMassProps {
    fn from(flags: LockedAxes) -> Self {
        Self {
            flags,
            ..Self::default()
        }
    }
}

impl From<MassProperties> for RigidBodyMassProps {
    fn from(local_mprops: MassProperties) -> Self {
        Self {
            local_mprops,
            ..Default::default()
        }
    }
}

impl RigidBodyMassProps {
    /// The mass of the rigid-body.
    #[must_use]
    pub fn mass(&self) -> Real {
        crate::utils::inv(self.local_mprops.inv_mass)
    }

    /// The effective mass (that takes the potential translation locking into account) of
    /// this rigid-body.
    #[must_use]
    pub fn effective_mass(&self) -> Vector<Real> {
        self.effective_inv_mass.map(crate::utils::inv)
    }

    /// The effective world-space angular inertia (that takes the potential rotation locking into account) of
    /// this rigid-body.
    #[must_use]
    pub fn effective_angular_inertia(&self) -> AngularInertia<Real> {
        self.effective_world_inv_inertia_sqrt.squared().inverse()
    }

    /// Recompute the mass-properties of this rigid-bodies based on its currentely attached colliders.
    pub fn recompute_mass_properties_from_colliders(
        &mut self,
        colliders: &ColliderSet,
        attached_colliders: &RigidBodyColliders,
        position: &Isometry<Real>,
    ) {
        self.local_mprops = self
            .additional_local_mprops
            .as_ref()
            .map(|mprops| **mprops)
            .unwrap_or_else(MassProperties::default);

        for handle in &attached_colliders.0 {
            if let Some(co) = colliders.get(*handle) {
                if let Some(co_parent) = co.parent {
                    let to_add = co
                        .mprops
                        .mass_properties(&*co.shape)
                        .transform_by(&co_parent.pos_wrt_parent);
                    self.local_mprops += to_add;
                }
            }
        }

        self.update_world_mass_properties(position);
    }

    /// Update the world-space mass properties of `self`, taking into account the new position.
    pub fn update_world_mass_properties(&mut self, position: &Isometry<Real>) {
        self.world_com = self.local_mprops.world_com(&position);
        self.effective_inv_mass = Vector::repeat(self.local_mprops.inv_mass);
        self.effective_world_inv_inertia_sqrt =
            self.local_mprops.world_inv_inertia_sqrt(&position.rotation);

        // Take into account translation/rotation locking.
        if self.flags.contains(LockedAxes::TRANSLATION_LOCKED_X) {
            self.effective_inv_mass.x = 0.0;
        }

        if self.flags.contains(LockedAxes::TRANSLATION_LOCKED_Y) {
            self.effective_inv_mass.y = 0.0;
        }

        #[cfg(feature = "dim3")]
        if self.flags.contains(LockedAxes::TRANSLATION_LOCKED_Z) {
            self.effective_inv_mass.z = 0.0;
        }

        #[cfg(feature = "dim2")]
        {
            if self.flags.contains(LockedAxes::ROTATION_LOCKED_Z) {
                self.effective_world_inv_inertia_sqrt = 0.0;
            }
        }
        #[cfg(feature = "dim3")]
        {
            if self.flags.contains(LockedAxes::ROTATION_LOCKED_X) {
                self.effective_world_inv_inertia_sqrt.m11 = 0.0;
                self.effective_world_inv_inertia_sqrt.m12 = 0.0;
                self.effective_world_inv_inertia_sqrt.m13 = 0.0;
            }

            if self.flags.contains(LockedAxes::ROTATION_LOCKED_Y) {
                self.effective_world_inv_inertia_sqrt.m22 = 0.0;
                self.effective_world_inv_inertia_sqrt.m12 = 0.0;
                self.effective_world_inv_inertia_sqrt.m23 = 0.0;
            }
            if self.flags.contains(LockedAxes::ROTATION_LOCKED_Z) {
                self.effective_world_inv_inertia_sqrt.m33 = 0.0;
                self.effective_world_inv_inertia_sqrt.m13 = 0.0;
                self.effective_world_inv_inertia_sqrt.m23 = 0.0;
            }
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// The velocities of this rigid-body.
pub struct RigidBodyVelocity {
    /// The linear velocity of the rigid-body.
    pub linvel: Vector<Real>,
    /// The angular velocity of the rigid-body.
    pub angvel: AngVector<Real>,
}

impl Default for RigidBodyVelocity {
    fn default() -> Self {
        Self::zero()
    }
}

impl RigidBodyVelocity {
    /// Create a new rigid-body velocity component.
    #[must_use]
    pub fn new(linvel: Vector<Real>, angvel: AngVector<Real>) -> Self {
        Self { linvel, angvel }
    }

    /// Converts a slice to a rigid-body velocity.
    ///
    /// The slice must contain at least 3 elements: the `slice[0..2]  contains
    /// the linear velocity and the `slice[2]` contains the angular velocity.
    #[must_use]
    #[cfg(feature = "dim2")]
    pub fn from_slice(slice: &[Real]) -> Self {
        Self {
            linvel: Vector::new(slice[0], slice[1]),
            angvel: slice[2],
        }
    }

    /// Converts a slice to a rigid-body velocity.
    ///
    /// The slice must contain at least 6 elements: the `slice[0..3]  contains
    /// the linear velocity and the `slice[3..6]` contains the angular velocity.
    #[must_use]
    #[cfg(feature = "dim3")]
    pub fn from_slice(slice: &[Real]) -> Self {
        Self {
            linvel: Vector::new(slice[0], slice[1], slice[2]),
            angvel: AngVector::new(slice[3], slice[4], slice[5]),
        }
    }

    /// Velocities set to zero.
    #[must_use]
    pub fn zero() -> Self {
        Self {
            linvel: na::zero(),
            angvel: na::zero(),
        }
    }

    /// This velocity seen as a slice.
    ///
    /// The linear part is stored first.
    #[inline]
    pub fn as_slice(&self) -> &[Real] {
        self.as_vector().as_slice()
    }

    /// This velocity seen as a mutable slice.
    ///
    /// The linear part is stored first.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [Real] {
        self.as_vector_mut().as_mut_slice()
    }

    /// This velocity seen as a vector.
    ///
    /// The linear part is stored first.   
    #[inline]
    #[cfg(feature = "dim2")]
    pub fn as_vector(&self) -> &na::Vector3<Real> {
        unsafe { std::mem::transmute(self) }
    }

    /// This velocity seen as a mutable vector.
    ///
    /// The linear part is stored first.    
    #[inline]
    #[cfg(feature = "dim2")]
    pub fn as_vector_mut(&mut self) -> &mut na::Vector3<Real> {
        unsafe { std::mem::transmute(self) }
    }

    /// This velocity seen as a vector.
    ///
    /// The linear part is stored first.   
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn as_vector(&self) -> &na::Vector6<Real> {
        unsafe { std::mem::transmute(self) }
    }

    /// This velocity seen as a mutable vector.
    ///
    /// The linear part is stored first.    
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn as_vector_mut(&mut self) -> &mut na::Vector6<Real> {
        unsafe { std::mem::transmute(self) }
    }

    /// Return `self` rotated by `rotation`.
    #[must_use]
    pub fn transformed(self, rotation: &Rotation<Real>) -> Self {
        Self {
            linvel: rotation * self.linvel,
            #[cfg(feature = "dim2")]
            angvel: self.angvel,
            #[cfg(feature = "dim3")]
            angvel: rotation * self.angvel,
        }
    }

    /// The approximate kinetic energy of this rigid-body.
    ///
    /// This approximation does not take the rigid-body's mass and angular inertia
    /// into account.
    #[must_use]
    pub fn pseudo_kinetic_energy(&self) -> Real {
        self.linvel.norm_squared() + self.angvel.gdot(self.angvel)
    }

    /// Returns the update velocities after applying the given damping.
    #[must_use]
    pub fn apply_damping(&self, dt: Real, damping: &RigidBodyDamping) -> Self {
        RigidBodyVelocity {
            linvel: self.linvel * (1.0 / (1.0 + dt * damping.linear_damping)),
            angvel: self.angvel * (1.0 / (1.0 + dt * damping.angular_damping)),
        }
    }

    /// The velocity of the given world-space point on this rigid-body.
    #[must_use]
    pub fn velocity_at_point(&self, point: &Point<Real>, world_com: &Point<Real>) -> Vector<Real> {
        let dpt = point - world_com;
        self.linvel + self.angvel.gcross(dpt)
    }

    /// Integrate the velocities in `self` to compute obtain new positions when moving from the given
    /// inital position `init_pos`.
    #[must_use]
    pub fn integrate(
        &self,
        dt: Real,
        init_pos: &Isometry<Real>,
        local_com: &Point<Real>,
    ) -> Isometry<Real> {
        let com = init_pos * local_com;
        let shift = Translation::from(com.coords);
        let mut result =
            shift * Isometry::new(self.linvel * dt, self.angvel * dt) * shift.inverse() * init_pos;
        result.rotation.renormalize_fast();
        result
    }

    /// Are these velocities exactly equal to zero?
    #[must_use]
    pub fn is_zero(&self) -> bool {
        self.linvel.is_zero() && self.angvel.is_zero()
    }

    /// The kinetic energy of this rigid-body.
    #[must_use]
    pub fn kinetic_energy(&self, rb_mprops: &RigidBodyMassProps) -> Real {
        let mut energy = (rb_mprops.mass() * self.linvel.norm_squared()) / 2.0;

        #[cfg(feature = "dim2")]
        if !rb_mprops.effective_world_inv_inertia_sqrt.is_zero() {
            let inertia_sqrt = 1.0 / rb_mprops.effective_world_inv_inertia_sqrt;
            energy += (inertia_sqrt * self.angvel).powi(2) / 2.0;
        }

        #[cfg(feature = "dim3")]
        if !rb_mprops.effective_world_inv_inertia_sqrt.is_zero() {
            let inertia_sqrt = rb_mprops
                .effective_world_inv_inertia_sqrt
                .inverse_unchecked();
            energy += (inertia_sqrt * self.angvel).norm_squared() / 2.0;
        }

        energy
    }

    /// Applies an impulse at the center-of-mass of this rigid-body.
    /// The impulse is applied right away, changing the linear velocity.
    /// This does nothing on non-dynamic bodies.
    pub fn apply_impulse(&mut self, rb_mprops: &RigidBodyMassProps, impulse: Vector<Real>) {
        self.linvel += impulse.component_mul(&rb_mprops.effective_inv_mass);
    }

    /// Applies an angular impulse at the center-of-mass of this rigid-body.
    /// The impulse is applied right away, changing the angular velocity.
    /// This does nothing on non-dynamic bodies.
    #[cfg(feature = "dim2")]
    pub fn apply_torque_impulse(&mut self, rb_mprops: &RigidBodyMassProps, torque_impulse: Real) {
        self.angvel += rb_mprops.effective_world_inv_inertia_sqrt
            * (rb_mprops.effective_world_inv_inertia_sqrt * torque_impulse);
    }

    /// Applies an angular impulse at the center-of-mass of this rigid-body.
    /// The impulse is applied right away, changing the angular velocity.
    /// This does nothing on non-dynamic bodies.
    #[cfg(feature = "dim3")]
    pub fn apply_torque_impulse(
        &mut self,
        rb_mprops: &RigidBodyMassProps,
        torque_impulse: Vector<Real>,
    ) {
        self.angvel += rb_mprops.effective_world_inv_inertia_sqrt
            * (rb_mprops.effective_world_inv_inertia_sqrt * torque_impulse);
    }

    /// Applies an impulse at the given world-space point of this rigid-body.
    /// The impulse is applied right away, changing the linear and/or angular velocities.
    /// This does nothing on non-dynamic bodies.
    pub fn apply_impulse_at_point(
        &mut self,
        rb_mprops: &RigidBodyMassProps,
        impulse: Vector<Real>,
        point: Point<Real>,
    ) {
        let torque_impulse = (point - rb_mprops.world_com).gcross(impulse);
        self.apply_impulse(rb_mprops, impulse);
        self.apply_torque_impulse(rb_mprops, torque_impulse);
    }
}

impl std::ops::Mul<Real> for RigidBodyVelocity {
    type Output = Self;

    #[must_use]
    fn mul(self, rhs: Real) -> Self {
        RigidBodyVelocity {
            linvel: self.linvel * rhs,
            angvel: self.angvel * rhs,
        }
    }
}

impl std::ops::Add<RigidBodyVelocity> for RigidBodyVelocity {
    type Output = Self;

    #[must_use]
    fn add(self, rhs: Self) -> Self {
        RigidBodyVelocity {
            linvel: self.linvel + rhs.linvel,
            angvel: self.angvel + rhs.angvel,
        }
    }
}

impl std::ops::AddAssign<RigidBodyVelocity> for RigidBodyVelocity {
    #[must_use]
    fn add_assign(&mut self, rhs: Self) {
        self.linvel += rhs.linvel;
        self.angvel += rhs.angvel;
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// Damping factors to progressively slow down a rigid-body.
pub struct RigidBodyDamping {
    /// Damping factor for gradually slowing down the translational motion of the rigid-body.
    pub linear_damping: Real,
    /// Damping factor for gradually slowing down the angular motion of the rigid-body.
    pub angular_damping: Real,
}

impl Default for RigidBodyDamping {
    fn default() -> Self {
        Self {
            linear_damping: 0.0,
            angular_damping: 0.0,
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// The user-defined external forces applied to this rigid-body.
pub struct RigidBodyForces {
    /// Accumulation of external forces (only for dynamic bodies).
    pub force: Vector<Real>,
    /// Accumulation of external torques (only for dynamic bodies).
    pub torque: AngVector<Real>,
    /// Gravity is multiplied by this scaling factor before it's
    /// applied to this rigid-body.
    pub gravity_scale: Real,
    /// Forces applied by the user.
    pub user_force: Vector<Real>,
    /// Torque applied by the user.
    pub user_torque: AngVector<Real>,
}

impl Default for RigidBodyForces {
    fn default() -> Self {
        Self {
            force: na::zero(),
            torque: na::zero(),
            gravity_scale: 1.0,
            user_force: na::zero(),
            user_torque: na::zero(),
        }
    }
}

impl RigidBodyForces {
    /// Integrate these forces to compute new velocities.
    #[must_use]
    pub fn integrate(
        &self,
        dt: Real,
        init_vels: &RigidBodyVelocity,
        mprops: &RigidBodyMassProps,
    ) -> RigidBodyVelocity {
        let linear_acc = self.force.component_mul(&mprops.effective_inv_mass);
        let angular_acc = mprops.effective_world_inv_inertia_sqrt
            * (mprops.effective_world_inv_inertia_sqrt * self.torque);

        RigidBodyVelocity {
            linvel: init_vels.linvel + linear_acc * dt,
            angvel: init_vels.angvel + angular_acc * dt,
        }
    }

    /// Adds to `self` the gravitational force that would result in a gravitational acceleration
    /// equal to `gravity`.
    pub fn compute_effective_force_and_torque(
        &mut self,
        gravity: &Vector<Real>,
        mass: &Vector<Real>,
    ) {
        self.force = self.user_force + gravity.component_mul(&mass) * self.gravity_scale;
        self.torque = self.user_torque;
    }

    /// Applies a force at the given world-space point of the rigid-body with the given mass properties.
    pub fn apply_force_at_point(
        &mut self,
        rb_mprops: &RigidBodyMassProps,
        force: Vector<Real>,
        point: Point<Real>,
    ) {
        self.user_force += force;
        self.user_torque += (point - rb_mprops.world_com).gcross(force);
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// Information used for Continuous-Collision-Detection.
pub struct RigidBodyCcd {
    /// The distance used by the CCD solver to decide if a movement would
    /// result in a tunnelling problem.
    pub ccd_thickness: Real,
    /// The max distance between this rigid-body's center of mass and its
    /// furthest collider point.
    pub ccd_max_dist: Real,
    /// Is CCD active for this rigid-body?
    ///
    /// If `self.ccd_enabled` is `true`, then this is automatically set to
    /// `true` when the CCD solver detects that the rigid-body is moving fast
    /// enough to potential cause a tunneling problem.
    pub ccd_active: bool,
    /// Is CCD enabled for this rigid-body?
    pub ccd_enabled: bool,
}

impl Default for RigidBodyCcd {
    fn default() -> Self {
        Self {
            ccd_thickness: 0.0,
            ccd_max_dist: 0.0,
            ccd_active: false,
            ccd_enabled: false,
        }
    }
}

impl RigidBodyCcd {
    /// The maximum velocity any point of any collider attached to this rigid-body
    /// moving with the given velocity can have.
    pub fn max_point_velocity(&self, vels: &RigidBodyVelocity) -> Real {
        #[cfg(feature = "dim2")]
        return vels.linvel.norm() + vels.angvel.abs() * self.ccd_max_dist;
        #[cfg(feature = "dim3")]
        return vels.linvel.norm() + vels.angvel.norm() * self.ccd_max_dist;
    }

    /// Is this rigid-body moving fast enough so that it may cause a tunneling problem?
    pub fn is_moving_fast(
        &self,
        dt: Real,
        vels: &RigidBodyVelocity,
        forces: Option<&RigidBodyForces>,
    ) -> bool {
        // NOTE: for the threshold we don't use the exact CCD thickness. Theoretically, we
        //       should use `self.rb_ccd.ccd_thickness - smallest_contact_dist` where `smallest_contact_dist`
        //       is the deepest contact (the contact with the largest penetration depth, i.e., the
        //       negative `dist` with the largest absolute value.
        //       However, getting this penetration depth assumes querying the contact graph from
        //       the narrow-phase, which can be pretty expensive. So we use the CCD thickness
        //       divided by 10 right now. We will see in practice if this value is OK or if we
        //       should use a smaller (to be less conservative) or larger divisor (to be more conservative).
        let threshold = self.ccd_thickness / 10.0;

        if let Some(forces) = forces {
            let linear_part = (vels.linvel + forces.force * dt).norm();
            #[cfg(feature = "dim2")]
            let angular_part = (vels.angvel + forces.torque * dt).abs() * self.ccd_max_dist;
            #[cfg(feature = "dim3")]
            let angular_part = (vels.angvel + forces.torque * dt).norm() * self.ccd_max_dist;
            let vel_with_forces = linear_part + angular_part;
            vel_with_forces > threshold
        } else {
            self.max_point_velocity(vels) * dt > threshold
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq, Eq, Hash)]
/// Internal identifiers used by the physics engine.
pub struct RigidBodyIds {
    pub(crate) active_island_id: usize,
    pub(crate) active_set_id: usize,
    pub(crate) active_set_offset: usize,
    pub(crate) active_set_timestamp: u32,
}

impl Default for RigidBodyIds {
    fn default() -> Self {
        Self {
            active_island_id: 0,
            active_set_id: 0,
            active_set_offset: 0,
            active_set_timestamp: 0,
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, PartialEq, Eq)]
/// The set of colliders attached to this rigid-bodies.
///
/// This should not be modified manually unless you really know what
/// you are doing (for example if you are trying to integrate Rapier
/// to a game engine using its component-based interface).
pub struct RigidBodyColliders(pub Vec<ColliderHandle>);

impl Default for RigidBodyColliders {
    fn default() -> Self {
        Self(vec![])
    }
}

impl RigidBodyColliders {
    /// Detach a collider from this rigid-body.
    pub fn detach_collider(
        &mut self,
        rb_changes: &mut RigidBodyChanges,
        co_handle: ColliderHandle,
    ) {
        if let Some(i) = self.0.iter().position(|e| *e == co_handle) {
            rb_changes.set(
                RigidBodyChanges::MODIFIED | RigidBodyChanges::COLLIDERS,
                true,
            );
            self.0.swap_remove(i);
        }
    }

    /// Attach a collider to this rigid-body.
    pub fn attach_collider(
        &mut self,
        rb_changes: &mut RigidBodyChanges,
        rb_ccd: &mut RigidBodyCcd,
        rb_mprops: &mut RigidBodyMassProps,
        rb_pos: &RigidBodyPosition,
        co_handle: ColliderHandle,
        co_pos: &mut ColliderPosition,
        co_parent: &ColliderParent,
        co_shape: &ColliderShape,
        co_mprops: &ColliderMassProps,
    ) {
        rb_changes.set(
            RigidBodyChanges::MODIFIED | RigidBodyChanges::COLLIDERS,
            true,
        );

        co_pos.0 = rb_pos.position * co_parent.pos_wrt_parent;
        rb_ccd.ccd_thickness = rb_ccd.ccd_thickness.min(co_shape.ccd_thickness());

        let shape_bsphere = co_shape.compute_bounding_sphere(&co_parent.pos_wrt_parent);
        rb_ccd.ccd_max_dist = rb_ccd
            .ccd_max_dist
            .max(shape_bsphere.center.coords.norm() + shape_bsphere.radius);

        let mass_properties = co_mprops
            .mass_properties(&**co_shape)
            .transform_by(&co_parent.pos_wrt_parent);
        self.0.push(co_handle);
        rb_mprops.local_mprops += mass_properties;
        rb_mprops.update_world_mass_properties(&rb_pos.position);
    }

    /// Update the positions of all the colliders attached to this rigid-body.
    pub fn update_positions(
        &self,
        colliders: &mut ColliderSet,
        modified_colliders: &mut Vec<ColliderHandle>,
        parent_pos: &Isometry<Real>,
    ) {
        for handle in &self.0 {
            // NOTE: the ColliderParent component must exist if we enter this method.
            let co = colliders.index_mut_internal(*handle);
            let new_pos = parent_pos * co.parent.as_ref().unwrap().pos_wrt_parent;

            if !co.changes.contains(ColliderChanges::MODIFIED) {
                modified_colliders.push(*handle);
            }

            // Set the modification flag so we can benefit from the modification-tracking
            // when updating the narrow-phase/broad-phase afterwards.
            co.changes |= ColliderChanges::POSITION;
            co.pos = ColliderPosition(new_pos);
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
/// The dominance groups of a rigid-body.
pub struct RigidBodyDominance(pub i8);

impl Default for RigidBodyDominance {
    fn default() -> Self {
        RigidBodyDominance(0)
    }
}

impl RigidBodyDominance {
    /// The actual dominance group of this rigid-body, after taking into account its type.
    pub fn effective_group(&self, status: &RigidBodyType) -> i16 {
        if status.is_dynamic() {
            self.0 as i16
        } else {
            i8::MAX as i16 + 1
        }
    }
}

/// The rb_activation status of a body.
///
/// This controls whether a body is sleeping or not.
/// If the threshold is negative, the body never sleeps.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct RigidBodyActivation {
    /// The threshold linear velocity bellow which the body can fall asleep.
    pub linear_threshold: Real,
    /// The angular linear velocity bellow which the body can fall asleep.
    pub angular_threshold: Real,
    /// Since how much time can this body sleep?
    pub time_since_can_sleep: Real,
    /// Is this body sleeping?
    pub sleeping: bool,
}

impl Default for RigidBodyActivation {
    fn default() -> Self {
        Self::active()
    }
}

impl RigidBodyActivation {
    /// The default linear velocity bellow which a body can be put to sleep.
    pub fn default_linear_threshold() -> Real {
        0.4
    }

    /// The default angular velocity bellow which a body can be put to sleep.
    pub fn default_angular_threshold() -> Real {
        0.5
    }

    /// The amount of time the rigid-body must remain bellow it’s linear and angular velocity
    /// threshold before falling to sleep.
    pub fn default_time_until_sleep() -> Real {
        2.0
    }

    /// Create a new rb_activation status initialised with the default rb_activation threshold and is active.
    pub fn active() -> Self {
        RigidBodyActivation {
            linear_threshold: Self::default_linear_threshold(),
            angular_threshold: Self::default_angular_threshold(),
            time_since_can_sleep: 0.0,
            sleeping: false,
        }
    }

    /// Create a new rb_activation status initialised with the default rb_activation threshold and is inactive.
    pub fn inactive() -> Self {
        RigidBodyActivation {
            linear_threshold: Self::default_linear_threshold(),
            angular_threshold: Self::default_angular_threshold(),
            sleeping: true,
            time_since_can_sleep: Self::default_time_until_sleep(),
        }
    }

    /// Create a new activation status that prevents the rigid-body from sleeping.
    pub fn cannot_sleep() -> Self {
        RigidBodyActivation {
            linear_threshold: -1.0,
            angular_threshold: -1.0,
            ..Self::active()
        }
    }

    /// Returns `true` if the body is not asleep.
    #[inline]
    pub fn is_active(&self) -> bool {
        !self.sleeping
    }

    /// Wakes up this rigid-body.
    #[inline]
    pub fn wake_up(&mut self, strong: bool) {
        self.sleeping = false;
        if strong {
            self.time_since_can_sleep = 0.0;
        }
    }

    /// Put this rigid-body to sleep.
    #[inline]
    pub fn sleep(&mut self) {
        self.sleeping = true;
        self.time_since_can_sleep = Self::default_time_until_sleep();
    }
}