1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
use crate::data::{ComponentSetMut, ComponentSetOption};
use crate::dynamics::MassProperties;
use crate::geometry::{
    ColliderChanges, ColliderHandle, ColliderMassProps, ColliderParent, ColliderPosition,
    ColliderShape,
};
use crate::math::{
    AngVector, AngularInertia, Isometry, Point, Real, Rotation, Translation, Vector,
};
use crate::parry::partitioning::IndexedData;
use crate::utils::{WAngularInertia, WCross, WDot};
use num::Zero;

/// The unique handle of a rigid body added to a `RigidBodySet`.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[repr(transparent)]
pub struct RigidBodyHandle(pub crate::data::arena::Index);

impl RigidBodyHandle {
    /// Converts this handle into its (index, generation) components.
    pub fn into_raw_parts(self) -> (u32, u32) {
        self.0.into_raw_parts()
    }

    /// Reconstructs an handle from its (index, generation) components.
    pub fn from_raw_parts(id: u32, generation: u32) -> Self {
        Self(crate::data::arena::Index::from_raw_parts(id, generation))
    }

    /// An always-invalid rigid-body handle.
    pub fn invalid() -> Self {
        Self(crate::data::arena::Index::from_raw_parts(
            crate::INVALID_U32,
            crate::INVALID_U32,
        ))
    }
}

impl IndexedData for RigidBodyHandle {
    fn default() -> Self {
        Self(IndexedData::default())
    }

    fn index(&self) -> usize {
        self.0.index()
    }
}

/// The type of a body, governing the way it is affected by external forces.
#[deprecated(note = "renamed as RigidBodyType")]
pub type BodyStatus = RigidBodyType;

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
/// The status of a body, governing the way it is affected by external forces.
pub enum RigidBodyType {
    /// A `RigidBodyType::Dynamic` body can be affected by all external forces.
    Dynamic = 0,
    /// A `RigidBodyType::Static` body cannot be affected by external forces.
    Static = 1,
    /// A `RigidBodyType::KinematicPositionBased` body cannot be affected by any external forces but can be controlled
    /// by the user at the position level while keeping realistic one-way interaction with dynamic bodies.
    ///
    /// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
    /// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
    /// modified by the user and is independent from any contact or joint it is involved in.
    KinematicPositionBased = 2,
    /// A `RigidBodyType::KinematicVelocityBased` body cannot be affected by any external forces but can be controlled
    /// by the user at the velocity level while keeping realistic one-way interaction with dynamic bodies.
    ///
    /// One-way interaction means that a kinematic body can push a dynamic body, but a kinematic body
    /// cannot be pushed by anything. In other words, the trajectory of a kinematic body can only be
    /// modified by the user and is independent from any contact or joint it is involved in.
    KinematicVelocityBased = 3,
    // Semikinematic, // A kinematic that performs automatic CCD with the static environment to avoid traversing it?
    // Disabled,
}

impl RigidBodyType {
    /// Is this rigid-body static (i.e. cannot move)?
    pub fn is_static(self) -> bool {
        self == RigidBodyType::Static
    }

    /// Is this rigid-body dynamic (i.e. can move and be affected by forces)?
    pub fn is_dynamic(self) -> bool {
        self == RigidBodyType::Dynamic
    }

    /// Is this rigid-body kinematic (i.e. can move but is unaffected by forces)?
    pub fn is_kinematic(self) -> bool {
        self == RigidBodyType::KinematicPositionBased
            || self == RigidBodyType::KinematicVelocityBased
    }
}

bitflags::bitflags! {
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    /// Flags describing how the rigid-body has been modified by the user.
    pub struct RigidBodyChanges: u32 {
        /// Flag indicating that any component of this rigid-body has been modified.
        const MODIFIED    = 1 << 0;
        /// Flag indicating that the `RigidBodyPosition` component of this rigid-body has been modified.
        const POSITION    = 1 << 1;
        /// Flag indicating that the `RigidBodyActivation` component of this rigid-body has been modified.
        const SLEEP       = 1 << 2;
        /// Flag indicating that the `RigidBodyColliders` component of this rigid-body has been modified.
        const COLLIDERS   = 1 << 3;
        /// Flag indicating that the `RigidBodyType` component of this rigid-body has been modified.
        const TYPE        = 1 << 4;
        /// Flag indicating that the `RigidBodyDominance` component of this rigid-body has been modified.
        const DOMINANCE   = 1 << 5;
    }
}

impl Default for RigidBodyChanges {
    fn default() -> Self {
        RigidBodyChanges::empty()
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// The position of this rigid-body.
pub struct RigidBodyPosition {
    /// The world-space position of the rigid-body.
    pub position: Isometry<Real>,
    /// The next position of the rigid-body.
    ///
    /// At the beginning of the timestep, and when the
    /// timestep is complete we must have position == next_position
    /// except for kinematic bodies.
    ///
    /// The next_position is updated after the velocity and position
    /// resolution. Then it is either validated (ie. we set position := set_position)
    /// or clamped by CCD.
    pub next_position: Isometry<Real>,
}

impl Default for RigidBodyPosition {
    fn default() -> Self {
        Self {
            position: Isometry::identity(),
            next_position: Isometry::identity(),
        }
    }
}

impl RigidBodyPosition {
    /// Computes the velocity need to travel from `self.position` to `self.next_position` in
    /// a time equal to `1.0 / inv_dt`.
    #[must_use]
    pub fn interpolate_velocity(&self, inv_dt: Real, local_com: &Point<Real>) -> RigidBodyVelocity {
        let com = self.position * local_com;
        let shift = Translation::from(com.coords);
        let dpos = shift.inverse() * self.next_position * self.position.inverse() * shift;

        let angvel;
        #[cfg(feature = "dim2")]
        {
            angvel = dpos.rotation.angle() * inv_dt;
        }
        #[cfg(feature = "dim3")]
        {
            angvel = dpos.rotation.scaled_axis() * inv_dt;
        }
        let linvel = dpos.translation.vector * inv_dt;

        RigidBodyVelocity { linvel, angvel }
    }

    /// Compute new positions after integrating the given forces and velocities.
    ///
    /// This uses a symplectic Euler integration scheme.
    #[must_use]
    pub fn integrate_forces_and_velocities(
        &self,
        dt: Real,
        forces: &RigidBodyForces,
        vels: &RigidBodyVelocity,
        mprops: &RigidBodyMassProps,
    ) -> Isometry<Real> {
        let new_vels = forces.integrate(dt, vels, mprops);
        new_vels.integrate(dt, &self.position, &mprops.local_mprops.local_com)
    }
}

impl<T> From<T> for RigidBodyPosition
where
    Isometry<Real>: From<T>,
{
    fn from(position: T) -> Self {
        let position = position.into();
        Self {
            position,
            next_position: position,
        }
    }
}

bitflags::bitflags! {
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    /// Flags affecting the behavior of the constraints solver for a given contact manifold.
    pub struct RigidBodyMassPropsFlags: u8 {
        /// Flag indicating that the rigid-body cannot translate along any direction.
        const TRANSLATION_LOCKED = 1 << 0;
        /// Flag indicating that the rigid-body cannot rotate along the `X` axis.
        const ROTATION_LOCKED_X = 1 << 1;
        /// Flag indicating that the rigid-body cannot rotate along the `Y` axis.
        const ROTATION_LOCKED_Y = 1 << 2;
        /// Flag indicating that the rigid-body cannot rotate along the `Z` axis.
        const ROTATION_LOCKED_Z = 1 << 3;
        /// Combination of flags indicating that the rigid-body cannot rotate along any axis.
        const ROTATION_LOCKED = Self::ROTATION_LOCKED_X.bits | Self::ROTATION_LOCKED_Y.bits | Self::ROTATION_LOCKED_Z.bits;
    }
}

// TODO: split this into "LocalMassProps" and `WorldMassProps"?
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// The mass properties of this rigid-bodies.
pub struct RigidBodyMassProps {
    /// Flags for locking rotation and translation.
    pub flags: RigidBodyMassPropsFlags,
    /// The local mass properties of the rigid-body.
    pub local_mprops: MassProperties,
    /// The world-space center of mass of the rigid-body.
    pub world_com: Point<Real>,
    /// The inverse mass taking into account translation locking.
    pub effective_inv_mass: Real,
    /// The square-root of the world-space inverse angular inertia tensor of the rigid-body,
    /// taking into account rotation locking.
    pub effective_world_inv_inertia_sqrt: AngularInertia<Real>,
}

impl Default for RigidBodyMassProps {
    fn default() -> Self {
        Self {
            flags: RigidBodyMassPropsFlags::empty(),
            local_mprops: MassProperties::zero(),
            world_com: Point::origin(),
            effective_inv_mass: 0.0,
            effective_world_inv_inertia_sqrt: AngularInertia::zero(),
        }
    }
}

impl From<RigidBodyMassPropsFlags> for RigidBodyMassProps {
    fn from(flags: RigidBodyMassPropsFlags) -> Self {
        Self {
            flags,
            ..Self::default()
        }
    }
}

impl From<MassProperties> for RigidBodyMassProps {
    fn from(local_mprops: MassProperties) -> Self {
        Self {
            local_mprops,
            ..Default::default()
        }
    }
}

impl RigidBodyMassProps {
    /// The mass of the rigid-body.
    #[must_use]
    pub fn mass(&self) -> Real {
        crate::utils::inv(self.local_mprops.inv_mass)
    }

    /// The effective mass (that takes the potential translation locking into account) of
    /// this rigid-body.
    #[must_use]
    pub fn effective_mass(&self) -> Real {
        crate::utils::inv(self.effective_inv_mass)
    }

    /// The effective world-space angular inertia (that takes the potential rotation locking into account) of
    /// this rigid-body.
    #[must_use]
    pub fn effective_angular_inertia(&self) -> AngularInertia<Real> {
        self.effective_world_inv_inertia_sqrt.squared().inverse()
    }

    /// Update the world-space mass properties of `self`, taking into account the new position.
    pub fn update_world_mass_properties(&mut self, position: &Isometry<Real>) {
        self.world_com = self.local_mprops.world_com(&position);
        self.effective_inv_mass = self.local_mprops.inv_mass;
        self.effective_world_inv_inertia_sqrt =
            self.local_mprops.world_inv_inertia_sqrt(&position.rotation);

        // Take into account translation/rotation locking.
        if self
            .flags
            .contains(RigidBodyMassPropsFlags::TRANSLATION_LOCKED)
        {
            self.effective_inv_mass = 0.0;
        }

        #[cfg(feature = "dim2")]
        {
            if self
                .flags
                .contains(RigidBodyMassPropsFlags::ROTATION_LOCKED_Z)
            {
                self.effective_world_inv_inertia_sqrt = 0.0;
            }
        }
        #[cfg(feature = "dim3")]
        {
            if self
                .flags
                .contains(RigidBodyMassPropsFlags::ROTATION_LOCKED_X)
            {
                self.effective_world_inv_inertia_sqrt.m11 = 0.0;
                self.effective_world_inv_inertia_sqrt.m12 = 0.0;
                self.effective_world_inv_inertia_sqrt.m13 = 0.0;
            }

            if self
                .flags
                .contains(RigidBodyMassPropsFlags::ROTATION_LOCKED_Y)
            {
                self.effective_world_inv_inertia_sqrt.m22 = 0.0;
                self.effective_world_inv_inertia_sqrt.m12 = 0.0;
                self.effective_world_inv_inertia_sqrt.m23 = 0.0;
            }
            if self
                .flags
                .contains(RigidBodyMassPropsFlags::ROTATION_LOCKED_Z)
            {
                self.effective_world_inv_inertia_sqrt.m33 = 0.0;
                self.effective_world_inv_inertia_sqrt.m13 = 0.0;
                self.effective_world_inv_inertia_sqrt.m23 = 0.0;
            }
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// The velocities of this rigid-body.
pub struct RigidBodyVelocity {
    /// The linear velocity of the rigid-body.
    pub linvel: Vector<Real>,
    /// The angular velocity of the rigid-body.
    pub angvel: AngVector<Real>,
}

impl Default for RigidBodyVelocity {
    fn default() -> Self {
        Self::zero()
    }
}

impl RigidBodyVelocity {
    /// Create a new rigid-body velocity component.
    #[must_use]
    pub fn new(linvel: Vector<Real>, angvel: AngVector<Real>) -> Self {
        Self { linvel, angvel }
    }

    /// Converts a slice to a rigid-body velocity.
    ///
    /// The slice must contain at least 3 elements: the `slice[0..2]  contains
    /// the linear velocity and the `slice[2]` contains the angular velocity.
    #[must_use]
    #[cfg(feature = "dim2")]
    pub fn from_slice(slice: &[Real]) -> Self {
        Self {
            linvel: Vector::new(slice[0], slice[1]),
            angvel: slice[2],
        }
    }

    /// Converts a slice to a rigid-body velocity.
    ///
    /// The slice must contain at least 6 elements: the `slice[0..3]  contains
    /// the linear velocity and the `slice[3..6]` contains the angular velocity.
    #[must_use]
    #[cfg(feature = "dim3")]
    pub fn from_slice(slice: &[Real]) -> Self {
        Self {
            linvel: Vector::new(slice[0], slice[1], slice[2]),
            angvel: AngVector::new(slice[3], slice[4], slice[5]),
        }
    }

    #[cfg(feature = "dim2")]
    pub(crate) fn from_vectors(linvel: Vector<Real>, angvel: na::Vector1<Real>) -> Self {
        Self {
            linvel,
            angvel: angvel.x,
        }
    }

    #[cfg(feature = "dim3")]
    pub(crate) fn from_vectors(linvel: Vector<Real>, angvel: Vector<Real>) -> Self {
        Self { linvel, angvel }
    }

    /// Velocities set to zero.
    #[must_use]
    pub fn zero() -> Self {
        Self {
            linvel: na::zero(),
            angvel: na::zero(),
        }
    }

    /// This velocity seen as a slice.
    ///
    /// The linear part is stored first.
    #[inline]
    pub fn as_slice(&self) -> &[Real] {
        self.as_vector().as_slice()
    }

    /// This velocity seen as a mutable slice.
    ///
    /// The linear part is stored first.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [Real] {
        self.as_vector_mut().as_mut_slice()
    }

    /// This velocity seen as a vector.
    ///
    /// The linear part is stored first.   
    #[inline]
    #[cfg(feature = "dim2")]
    pub fn as_vector(&self) -> &na::Vector3<Real> {
        unsafe { std::mem::transmute(self) }
    }

    /// This velocity seen as a mutable vector.
    ///
    /// The linear part is stored first.    
    #[inline]
    #[cfg(feature = "dim2")]
    pub fn as_vector_mut(&mut self) -> &mut na::Vector3<Real> {
        unsafe { std::mem::transmute(self) }
    }

    /// This velocity seen as a vector.
    ///
    /// The linear part is stored first.   
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn as_vector(&self) -> &na::Vector6<Real> {
        unsafe { std::mem::transmute(self) }
    }

    /// This velocity seen as a mutable vector.
    ///
    /// The linear part is stored first.    
    #[inline]
    #[cfg(feature = "dim3")]
    pub fn as_vector_mut(&mut self) -> &mut na::Vector6<Real> {
        unsafe { std::mem::transmute(self) }
    }

    /// Return `self` transformed by `transform`.
    #[must_use]
    pub fn transformed(self, transform: &Isometry<Real>) -> Self {
        Self {
            linvel: transform * self.linvel,
            #[cfg(feature = "dim2")]
            angvel: self.angvel,
            #[cfg(feature = "dim3")]
            angvel: transform * self.angvel,
        }
    }

    /// Return `self` rotated by `rotation`.
    #[must_use]
    pub fn rotated(self, rotation: &Rotation<Real>) -> Self {
        Self {
            linvel: rotation * self.linvel,
            #[cfg(feature = "dim2")]
            angvel: self.angvel,
            #[cfg(feature = "dim3")]
            angvel: rotation * self.angvel,
        }
    }

    /// The approximate kinetic energy of this rigid-body.
    ///
    /// This approximation does not take the rigid-body's mass and angular inertia
    /// into account.
    #[must_use]
    pub fn pseudo_kinetic_energy(&self) -> Real {
        self.linvel.norm_squared() + self.angvel.gdot(self.angvel)
    }

    /// Returns the update velocities after applying the given damping.
    #[must_use]
    pub fn apply_damping(&self, dt: Real, damping: &RigidBodyDamping) -> Self {
        RigidBodyVelocity {
            linvel: self.linvel * (1.0 / (1.0 + dt * damping.linear_damping)),
            angvel: self.angvel * (1.0 / (1.0 + dt * damping.angular_damping)),
        }
    }

    /// The velocity of the given world-space point on this rigid-body.
    #[must_use]
    pub fn velocity_at_point(&self, point: &Point<Real>, world_com: &Point<Real>) -> Vector<Real> {
        let dpt = point - world_com;
        self.linvel + self.angvel.gcross(dpt)
    }

    /// Integrate the velocities in `self` to compute obtain new positions when moving from the given
    /// inital position `init_pos`.
    #[must_use]
    pub fn integrate(
        &self,
        dt: Real,
        init_pos: &Isometry<Real>,
        local_com: &Point<Real>,
    ) -> Isometry<Real> {
        let com = init_pos * local_com;
        let shift = Translation::from(com.coords);
        let mut result =
            shift * Isometry::new(self.linvel * dt, self.angvel * dt) * shift.inverse() * init_pos;
        result.rotation.renormalize_fast();
        result
    }

    /// Are these velocities exactly equal to zero?
    #[must_use]
    pub fn is_zero(&self) -> bool {
        self.linvel.is_zero() && self.angvel.is_zero()
    }

    /// The kinetic energy of this rigid-body.
    #[must_use]
    pub fn kinetic_energy(&self, rb_mprops: &RigidBodyMassProps) -> Real {
        let mut energy = (rb_mprops.mass() * self.linvel.norm_squared()) / 2.0;

        #[cfg(feature = "dim2")]
        if !rb_mprops.effective_world_inv_inertia_sqrt.is_zero() {
            let inertia_sqrt = 1.0 / rb_mprops.effective_world_inv_inertia_sqrt;
            energy += (inertia_sqrt * self.angvel).powi(2) / 2.0;
        }

        #[cfg(feature = "dim3")]
        if !rb_mprops.effective_world_inv_inertia_sqrt.is_zero() {
            let inertia_sqrt = rb_mprops
                .effective_world_inv_inertia_sqrt
                .inverse_unchecked();
            energy += (inertia_sqrt * self.angvel).norm_squared() / 2.0;
        }

        energy
    }

    /// Applies an impulse at the center-of-mass of this rigid-body.
    /// The impulse is applied right away, changing the linear velocity.
    /// This does nothing on non-dynamic bodies.
    pub fn apply_impulse(&mut self, rb_mprops: &RigidBodyMassProps, impulse: Vector<Real>) {
        self.linvel += impulse * rb_mprops.effective_inv_mass;
    }

    /// Applies an angular impulse at the center-of-mass of this rigid-body.
    /// The impulse is applied right away, changing the angular velocity.
    /// This does nothing on non-dynamic bodies.
    #[cfg(feature = "dim2")]
    pub fn apply_torque_impulse(&mut self, rb_mprops: &RigidBodyMassProps, torque_impulse: Real) {
        self.angvel += rb_mprops.effective_world_inv_inertia_sqrt
            * (rb_mprops.effective_world_inv_inertia_sqrt * torque_impulse);
    }

    /// Applies an angular impulse at the center-of-mass of this rigid-body.
    /// The impulse is applied right away, changing the angular velocity.
    /// This does nothing on non-dynamic bodies.
    #[cfg(feature = "dim3")]
    pub fn apply_torque_impulse(
        &mut self,
        rb_mprops: &RigidBodyMassProps,
        torque_impulse: Vector<Real>,
    ) {
        self.angvel += rb_mprops.effective_world_inv_inertia_sqrt
            * (rb_mprops.effective_world_inv_inertia_sqrt * torque_impulse);
    }

    /// Applies an impulse at the given world-space point of this rigid-body.
    /// The impulse is applied right away, changing the linear and/or angular velocities.
    /// This does nothing on non-dynamic bodies.
    pub fn apply_impulse_at_point(
        &mut self,
        rb_mprops: &RigidBodyMassProps,
        impulse: Vector<Real>,
        point: Point<Real>,
    ) {
        let torque_impulse = (point - rb_mprops.world_com).gcross(impulse);
        self.apply_impulse(rb_mprops, impulse);
        self.apply_torque_impulse(rb_mprops, torque_impulse);
    }
}

impl std::ops::Mul<Real> for RigidBodyVelocity {
    type Output = Self;

    #[must_use]
    fn mul(self, rhs: Real) -> Self {
        RigidBodyVelocity {
            linvel: self.linvel * rhs,
            angvel: self.angvel * rhs,
        }
    }
}

impl std::ops::Add<RigidBodyVelocity> for RigidBodyVelocity {
    type Output = Self;

    #[must_use]
    fn add(self, rhs: Self) -> Self {
        RigidBodyVelocity {
            linvel: self.linvel + rhs.linvel,
            angvel: self.angvel + rhs.angvel,
        }
    }
}

impl std::ops::AddAssign<RigidBodyVelocity> for RigidBodyVelocity {
    #[must_use]
    fn add_assign(&mut self, rhs: Self) {
        self.linvel += rhs.linvel;
        self.angvel += rhs.angvel;
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// Damping factors to progressively slow down a rigid-body.
pub struct RigidBodyDamping {
    /// Damping factor for gradually slowing down the translational motion of the rigid-body.
    pub linear_damping: Real,
    /// Damping factor for gradually slowing down the angular motion of the rigid-body.
    pub angular_damping: Real,
}

impl Default for RigidBodyDamping {
    fn default() -> Self {
        Self {
            linear_damping: 0.0,
            angular_damping: 0.0,
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// The user-defined external forces applied to this rigid-body.
pub struct RigidBodyForces {
    /// Accumulation of external forces (only for dynamic bodies).
    pub force: Vector<Real>,
    /// Accumulation of external torques (only for dynamic bodies).
    pub torque: AngVector<Real>,
    /// Gravity is multiplied by this scaling factor before it's
    /// applied to this rigid-body.
    pub gravity_scale: Real,
}

impl Default for RigidBodyForces {
    fn default() -> Self {
        Self {
            force: na::zero(),
            torque: na::zero(),
            gravity_scale: 1.0,
        }
    }
}

impl RigidBodyForces {
    /// Integrate these forces to compute new velocities.
    #[must_use]
    pub fn integrate(
        &self,
        dt: Real,
        init_vels: &RigidBodyVelocity,
        mprops: &RigidBodyMassProps,
    ) -> RigidBodyVelocity {
        let linear_acc = self.force * mprops.effective_inv_mass;
        let angular_acc = mprops.effective_world_inv_inertia_sqrt
            * (mprops.effective_world_inv_inertia_sqrt * self.torque);

        RigidBodyVelocity {
            linvel: init_vels.linvel + linear_acc * dt,
            angvel: init_vels.angvel + angular_acc * dt,
        }
    }

    /// Adds to `self` the gravitational force that would result in a gravitational acceleration
    /// equal to `gravity`.
    pub fn add_gravity_acceleration(&mut self, gravity: &Vector<Real>, mass: Real) {
        self.force += gravity * self.gravity_scale * mass;
    }

    /// Applies a force at the given world-space point of the rigid-body with the given mass properties.
    pub fn apply_force_at_point(
        &mut self,
        rb_mprops: &RigidBodyMassProps,
        force: Vector<Real>,
        point: Point<Real>,
    ) {
        self.force += force;
        self.torque += (point - rb_mprops.world_com).gcross(force);
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq)]
/// Information used for Continuous-Collision-Detection.
pub struct RigidBodyCcd {
    /// The distance used by the CCD solver to decide if a movement would
    /// result in a tunnelling problem.
    pub ccd_thickness: Real,
    /// The max distance between this rigid-body's center of mass and its
    /// furthest collider point.
    pub ccd_max_dist: Real,
    /// Is CCD active for this rigid-body?
    ///
    /// If `self.ccd_enabled` is `true`, then this is automatically set to
    /// `true` when the CCD solver detects that the rigid-body is moving fast
    /// enough to potential cause a tunneling problem.
    pub ccd_active: bool,
    /// Is CCD enabled for this rigid-body?
    pub ccd_enabled: bool,
}

impl Default for RigidBodyCcd {
    fn default() -> Self {
        Self {
            ccd_thickness: 0.0,
            ccd_max_dist: 0.0,
            ccd_active: false,
            ccd_enabled: false,
        }
    }
}

impl RigidBodyCcd {
    /// The maximum velocity any point of any collider attached to this rigid-body
    /// moving with the given velocity can have.
    pub fn max_point_velocity(&self, vels: &RigidBodyVelocity) -> Real {
        #[cfg(feature = "dim2")]
        return vels.linvel.norm() + vels.angvel.abs() * self.ccd_max_dist;
        #[cfg(feature = "dim3")]
        return vels.linvel.norm() + vels.angvel.norm() * self.ccd_max_dist;
    }

    /// Is this rigid-body moving fast enough so that it may cause a tunneling problem?
    pub fn is_moving_fast(
        &self,
        dt: Real,
        vels: &RigidBodyVelocity,
        forces: Option<&RigidBodyForces>,
    ) -> bool {
        // NOTE: for the threshold we don't use the exact CCD thickness. Theoretically, we
        //       should use `self.rb_ccd.ccd_thickness - smallest_contact_dist` where `smallest_contact_dist`
        //       is the deepest contact (the contact with the largest penetration depth, i.e., the
        //       negative `dist` with the largest absolute value.
        //       However, getting this penetration depth assumes querying the contact graph from
        //       the narrow-phase, which can be pretty expensive. So we use the CCD thickness
        //       divided by 10 right now. We will see in practice if this value is OK or if we
        //       should use a smaller (to be less conservative) or larger divisor (to be more conservative).
        let threshold = self.ccd_thickness / 10.0;

        if let Some(forces) = forces {
            let linear_part = (vels.linvel + forces.force * dt).norm();
            #[cfg(feature = "dim2")]
            let angular_part = (vels.angvel + forces.torque * dt).abs() * self.ccd_max_dist;
            #[cfg(feature = "dim3")]
            let angular_part = (vels.angvel + forces.torque * dt).norm() * self.ccd_max_dist;
            let vel_with_forces = linear_part + angular_part;
            vel_with_forces > threshold
        } else {
            self.max_point_velocity(vels) * dt > threshold
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq, Eq, Hash)]
/// Internal identifiers used by the physics engine.
pub struct RigidBodyIds {
    pub(crate) active_island_id: usize,
    pub(crate) active_set_id: usize,
    pub(crate) active_set_offset: usize,
    pub(crate) active_set_timestamp: u32,
}

impl Default for RigidBodyIds {
    fn default() -> Self {
        Self {
            active_island_id: 0,
            active_set_id: 0,
            active_set_offset: 0,
            active_set_timestamp: 0,
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, PartialEq, Eq)]
/// The set of colliders attached to this rigid-bodies.
///
/// This should not be modified manually unless you really know what
/// you are doing (for example if you are trying to integrate Rapier
/// to a game engine using its component-based interface).
pub struct RigidBodyColliders(pub Vec<ColliderHandle>);

impl Default for RigidBodyColliders {
    fn default() -> Self {
        Self(vec![])
    }
}

impl RigidBodyColliders {
    /// Detach a collider from this rigid-body.
    pub fn detach_collider(
        &mut self,
        rb_changes: &mut RigidBodyChanges,
        co_handle: ColliderHandle,
    ) {
        if let Some(i) = self.0.iter().position(|e| *e == co_handle) {
            rb_changes.set(
                RigidBodyChanges::MODIFIED | RigidBodyChanges::COLLIDERS,
                true,
            );
            self.0.swap_remove(i);
        }
    }

    /// Attach a collider to this rigid-body.
    pub fn attach_collider(
        &mut self,
        rb_changes: &mut RigidBodyChanges,
        rb_ccd: &mut RigidBodyCcd,
        rb_mprops: &mut RigidBodyMassProps,
        rb_pos: &RigidBodyPosition,
        co_handle: ColliderHandle,
        co_pos: &mut ColliderPosition,
        co_parent: &ColliderParent,
        co_shape: &ColliderShape,
        co_mprops: &ColliderMassProps,
    ) {
        rb_changes.set(
            RigidBodyChanges::MODIFIED | RigidBodyChanges::COLLIDERS,
            true,
        );

        co_pos.0 = rb_pos.position * co_parent.pos_wrt_parent;
        rb_ccd.ccd_thickness = rb_ccd.ccd_thickness.min(co_shape.ccd_thickness());

        let shape_bsphere = co_shape.compute_bounding_sphere(&co_parent.pos_wrt_parent);
        rb_ccd.ccd_max_dist = rb_ccd
            .ccd_max_dist
            .max(shape_bsphere.center.coords.norm() + shape_bsphere.radius);

        let mass_properties = co_mprops
            .mass_properties(&**co_shape)
            .transform_by(&co_parent.pos_wrt_parent);
        self.0.push(co_handle);
        rb_mprops.local_mprops += mass_properties;
        rb_mprops.update_world_mass_properties(&rb_pos.position);
    }

    /// Update the positions of all the colliders attached to this rigid-body.
    pub fn update_positions<Colliders>(
        &self,
        colliders: &mut Colliders,
        modified_colliders: &mut Vec<ColliderHandle>,
        parent_pos: &Isometry<Real>,
    ) where
        Colliders: ComponentSetMut<ColliderPosition>
            + ComponentSetMut<ColliderChanges>
            + ComponentSetOption<ColliderParent>,
    {
        for handle in &self.0 {
            // NOTE: the ColliderParent component must exist if we enter this method.
            let co_parent: &ColliderParent = colliders
                .get(handle.0)
                .expect("Could not find the ColliderParent component.");
            let new_pos = parent_pos * co_parent.pos_wrt_parent;

            // Set the modification flag so we can benefit from the modification-tracking
            // when updating the narrow-phase/broad-phase afterwards.
            colliders.map_mut_internal(handle.0, |co_changes: &mut ColliderChanges| {
                if !co_changes.contains(ColliderChanges::MODIFIED) {
                    modified_colliders.push(*handle);
                }

                *co_changes |= ColliderChanges::POSITION;
            });
            colliders.set_internal(handle.0, ColliderPosition(new_pos));
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone, Debug, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
/// The dominance groups of a rigid-body.
pub struct RigidBodyDominance(pub i8);

impl Default for RigidBodyDominance {
    fn default() -> Self {
        RigidBodyDominance(0)
    }
}

impl RigidBodyDominance {
    /// The actual dominance group of this rigid-body, after taking into account its type.
    pub fn effective_group(&self, status: &RigidBodyType) -> i16 {
        if status.is_dynamic() {
            self.0 as i16
        } else {
            i8::MAX as i16 + 1
        }
    }
}

/// The rb_activation status of a body.
///
/// This controls whether a body is sleeping or not.
/// If the threshold is negative, the body never sleeps.
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct RigidBodyActivation {
    /// The threshold pseudo-kinetic energy bellow which the body can fall asleep.
    pub threshold: Real,
    /// The current pseudo-kinetic energy of the body.
    pub energy: Real,
    /// Is this body already sleeping?
    pub sleeping: bool,
}

impl Default for RigidBodyActivation {
    fn default() -> Self {
        Self::active()
    }
}

impl RigidBodyActivation {
    /// The default amount of energy bellow which a body can be put to sleep by rapier.
    pub fn default_threshold() -> Real {
        0.01
    }

    /// Create a new rb_activation status initialised with the default rb_activation threshold and is active.
    pub fn active() -> Self {
        RigidBodyActivation {
            threshold: Self::default_threshold(),
            energy: Self::default_threshold() * 4.0,
            sleeping: false,
        }
    }

    /// Create a new rb_activation status initialised with the default rb_activation threshold and is inactive.
    pub fn inactive() -> Self {
        RigidBodyActivation {
            threshold: Self::default_threshold(),
            energy: 0.0,
            sleeping: true,
        }
    }

    /// Create a new activation status that prevents the rigid-body from sleeping.
    pub fn cannot_sleep() -> Self {
        RigidBodyActivation {
            threshold: -Real::MAX,
            ..Self::active()
        }
    }

    /// Returns `true` if the body is not asleep.
    #[inline]
    pub fn is_active(&self) -> bool {
        self.energy != 0.0
    }

    /// Wakes up this rigid-body.
    #[inline]
    pub fn wake_up(&mut self, strong: bool) {
        self.sleeping = false;
        if strong || self.energy == 0.0 {
            self.energy = self.threshold.abs() * 2.0;
        }
    }

    /// Put this rigid-body to sleep.
    #[inline]
    pub fn sleep(&mut self) {
        self.energy = 0.0;
        self.sleeping = true;
    }
}