1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
use crate::dynamics::RigidBodySet;
use crate::geometry::{
    Collider, ColliderHandle, ColliderSet, InteractionGroups, PointProjection, Ray,
    RayIntersection, SimdQuadTree,
};
use crate::math::{Isometry, Point, Real, Vector};
use crate::parry::motion::RigidMotion;
use parry::query::details::{
    IntersectionCompositeShapeShapeBestFirstVisitor,
    NonlinearTOICompositeShapeShapeBestFirstVisitor, PointCompositeShapeProjBestFirstVisitor,
    PointCompositeShapeProjWithFeatureBestFirstVisitor,
    RayCompositeShapeToiAndNormalBestFirstVisitor, RayCompositeShapeToiBestFirstVisitor,
    TOICompositeShapeShapeBestFirstVisitor,
};
use parry::query::visitors::{
    BoundingVolumeIntersectionsVisitor, PointIntersectionsVisitor, RayIntersectionsVisitor,
};
use parry::query::{DefaultQueryDispatcher, QueryDispatcher, TOI};
use parry::shape::{FeatureId, Shape, TypedSimdCompositeShape};
use std::sync::Arc;

/// A pipeline for performing queries on all the colliders of a scene.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Clone)]
pub struct QueryPipeline {
    #[cfg_attr(
        feature = "serde-serialize",
        serde(skip, default = "crate::geometry::default_query_dispatcher")
    )]
    query_dispatcher: Arc<dyn QueryDispatcher>,
    quadtree: SimdQuadTree<ColliderHandle>,
    tree_built: bool,
    dilation_factor: Real,
}

struct QueryPipelineAsCompositeShape<'a> {
    query_pipeline: &'a QueryPipeline,
    colliders: &'a ColliderSet,
    groups: InteractionGroups,
}

impl<'a> TypedSimdCompositeShape for QueryPipelineAsCompositeShape<'a> {
    type PartShape = dyn Shape;
    type PartId = ColliderHandle;

    fn map_typed_part_at(
        &self,
        shape_id: Self::PartId,
        mut f: impl FnMut(Option<&Isometry<Real>>, &Self::PartShape),
    ) {
        if let Some(collider) = self.colliders.get(shape_id) {
            if collider.collision_groups.test(self.groups) {
                f(Some(collider.position()), collider.shape())
            }
        }
    }

    fn map_untyped_part_at(
        &self,
        shape_id: Self::PartId,
        f: impl FnMut(Option<&Isometry<Real>>, &Self::PartShape),
    ) {
        self.map_typed_part_at(shape_id, f);
    }

    fn typed_quadtree(&self) -> &SimdQuadTree<ColliderHandle> {
        &self.query_pipeline.quadtree
    }
}

impl Default for QueryPipeline {
    fn default() -> Self {
        Self::new()
    }
}

impl QueryPipeline {
    /// Initializes an empty query pipeline.
    pub fn new() -> Self {
        Self::with_query_dispatcher(DefaultQueryDispatcher)
    }

    fn as_composite_shape<'a>(
        &'a self,
        colliders: &'a ColliderSet,
        groups: InteractionGroups,
    ) -> QueryPipelineAsCompositeShape<'a> {
        QueryPipelineAsCompositeShape {
            query_pipeline: self,
            colliders,
            groups,
        }
    }

    /// Initializes an empty query pipeline with a custom `QueryDispatcher`.
    ///
    /// Use this constructor in order to use a custom `QueryDispatcher` that is
    /// awary of your own user-defined shapes.
    pub fn with_query_dispatcher<D>(d: D) -> Self
    where
        D: 'static + QueryDispatcher,
    {
        Self {
            query_dispatcher: Arc::new(d),
            quadtree: SimdQuadTree::new(),
            tree_built: false,
            dilation_factor: 0.01,
        }
    }

    /// Update the acceleration structure on the query pipeline.
    pub fn update(&mut self, bodies: &RigidBodySet, colliders: &ColliderSet) {
        if !self.tree_built {
            let data = colliders.iter().map(|(h, c)| (h, c.compute_aabb()));
            self.quadtree.clear_and_rebuild(data, self.dilation_factor);
            // FIXME: uncomment this once we handle insertion/removals properly.
            // self.tree_built = true;
            return;
        }

        for (_, body) in bodies
            .iter_active_dynamic()
            .chain(bodies.iter_active_kinematic())
        {
            for handle in &body.colliders {
                self.quadtree.pre_update(*handle)
            }
        }

        self.quadtree.update(
            |handle| colliders[*handle].compute_aabb(),
            self.dilation_factor,
        );
    }

    /// Find the closest intersection between a ray and a set of collider.
    ///
    /// # Parameters
    /// - `position`: the position of this shape.
    /// - `ray`: the ray to cast.
    /// - `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
    pub fn cast_ray(
        &self,
        colliders: &ColliderSet,
        ray: &Ray,
        max_toi: Real,
        solid: bool,
        groups: InteractionGroups,
    ) -> Option<(ColliderHandle, Real)> {
        let pipeline_shape = self.as_composite_shape(colliders, groups);
        let mut visitor =
            RayCompositeShapeToiBestFirstVisitor::new(&pipeline_shape, ray, max_toi, solid);

        self.quadtree.traverse_best_first(&mut visitor).map(|h| h.1)
    }

    /// Find the closest intersection between a ray and a set of collider.
    ///
    /// # Parameters
    /// - `position`: the position of this shape.
    /// - `ray`: the ray to cast.
    /// - `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
    pub fn cast_ray_and_get_normal(
        &self,
        colliders: &ColliderSet,
        ray: &Ray,
        max_toi: Real,
        solid: bool,
        groups: InteractionGroups,
    ) -> Option<(ColliderHandle, RayIntersection)> {
        let pipeline_shape = self.as_composite_shape(colliders, groups);
        let mut visitor = RayCompositeShapeToiAndNormalBestFirstVisitor::new(
            &pipeline_shape,
            ray,
            max_toi,
            solid,
        );

        self.quadtree.traverse_best_first(&mut visitor).map(|h| h.1)
    }

    /// Find the all intersections between a ray and a set of collider and passes them to a callback.
    ///
    /// # Parameters
    /// - `position`: the position of this shape.
    /// - `ray`: the ray to cast.
    /// - `max_toi`: the maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the length of the ray to `ray.dir.norm() * max_toi`. Use `Real::MAX` for an unbounded ray.
    /// - `callback`: function executed on each collider for which a ray intersection has been found.
    ///   There is no guarantees on the order the results will be yielded. If this callback returns `false`,
    ///   this method will exit early, ignore any further raycast.
    pub fn intersections_with_ray<'a>(
        &self,
        colliders: &'a ColliderSet,
        ray: &Ray,
        max_toi: Real,
        solid: bool,
        groups: InteractionGroups,
        mut callback: impl FnMut(ColliderHandle, &'a Collider, RayIntersection) -> bool,
    ) {
        let mut leaf_callback = &mut |handle: &ColliderHandle| {
            if let Some(coll) = colliders.get(*handle) {
                if coll.collision_groups.test(groups) {
                    if let Some(hit) =
                        coll.shape()
                            .cast_ray_and_get_normal(coll.position(), ray, max_toi, solid)
                    {
                        return callback(*handle, coll, hit);
                    }
                }
            }

            true
        };

        let mut visitor = RayIntersectionsVisitor::new(ray, max_toi, &mut leaf_callback);
        self.quadtree.traverse_depth_first(&mut visitor);
    }

    /// Gets the handle of up to one collider intersecting the given shape.
    ///
    /// # Parameters
    /// * `colliders` - The set of colliders taking part in this pipeline.
    /// * `shape_pos` - The position of the shape used for the intersection test.
    /// * `shape` - The shape used for the intersection test.
    /// * `groups` - The bit groups and filter associated to the ray, in order to only
    ///   hit the colliders with collision groups compatible with the ray's group.
    pub fn intersection_with_shape(
        &self,
        colliders: &ColliderSet,
        shape_pos: &Isometry<Real>,
        shape: &dyn Shape,
        groups: InteractionGroups,
    ) -> Option<ColliderHandle> {
        let pipeline_shape = self.as_composite_shape(colliders, groups);
        let mut visitor = IntersectionCompositeShapeShapeBestFirstVisitor::new(
            &*self.query_dispatcher,
            shape_pos,
            &pipeline_shape,
            shape,
        );

        self.quadtree
            .traverse_best_first(&mut visitor)
            .map(|h| (h.1 .0))
    }

    /// Find the projection of a point on the closest collider.
    ///
    /// # Parameters
    /// * `colliders` - The set of colliders taking part in this pipeline.
    /// * `point` - The point to project.
    /// * `solid` - If this is set to `true` then the collider shapes are considered to
    ///   be plain (if the point is located inside of a plain shape, its projection is the point
    ///   itself). If it is set to `false` the collider shapes are considered to be hollow
    ///   (if the point is located inside of an hollow shape, it is projected on the shape's
    ///   boundary).
    /// * `groups` - The bit groups and filter associated to the point to project, in order to only
    ///   project on colliders with collision groups compatible with the ray's group.
    pub fn project_point(
        &self,
        colliders: &ColliderSet,
        point: &Point<Real>,
        solid: bool,
        groups: InteractionGroups,
    ) -> Option<(ColliderHandle, PointProjection)> {
        let pipeline_shape = self.as_composite_shape(colliders, groups);
        let mut visitor =
            PointCompositeShapeProjBestFirstVisitor::new(&pipeline_shape, point, solid);

        self.quadtree
            .traverse_best_first(&mut visitor)
            .map(|h| (h.1 .1, h.1 .0))
    }

    /// Find all the colliders containing the given point.
    ///
    /// # Parameters
    /// * `colliders` - The set of colliders taking part in this pipeline.
    /// * `point` - The point used for the containment test.
    /// * `groups` - The bit groups and filter associated to the point to test, in order to only
    ///   test on colliders with collision groups compatible with the ray's group.
    /// * `callback` - A function called with each collider with a shape
    ///   containing the `point`.
    pub fn intersections_with_point<'a>(
        &self,
        colliders: &'a ColliderSet,
        point: &Point<Real>,
        groups: InteractionGroups,
        mut callback: impl FnMut(ColliderHandle, &'a Collider) -> bool,
    ) {
        let mut leaf_callback = &mut |handle: &ColliderHandle| {
            if let Some(coll) = colliders.get(*handle) {
                if coll.collision_groups.test(groups)
                    && coll.shape().contains_point(coll.position(), point)
                {
                    return callback(*handle, coll);
                }
            }

            true
        };

        let mut visitor = PointIntersectionsVisitor::new(point, &mut leaf_callback);

        self.quadtree.traverse_depth_first(&mut visitor);
    }

    /// Find the projection of a point on the closest collider.
    ///
    /// The results include the ID of the feature hit by the point.
    ///
    /// # Parameters
    /// * `colliders` - The set of colliders taking part in this pipeline.
    /// * `point` - The point to project.
    /// * `solid` - If this is set to `true` then the collider shapes are considered to
    ///   be plain (if the point is located inside of a plain shape, its projection is the point
    ///   itself). If it is set to `false` the collider shapes are considered to be hollow
    ///   (if the point is located inside of an hollow shape, it is projected on the shape's
    ///   boundary).
    /// * `groups` - The bit groups and filter associated to the point to project, in order to only
    ///   project on colliders with collision groups compatible with the ray's group.
    pub fn project_point_and_get_feature(
        &self,
        colliders: &ColliderSet,
        point: &Point<Real>,
        groups: InteractionGroups,
    ) -> Option<(ColliderHandle, PointProjection, FeatureId)> {
        let pipeline_shape = self.as_composite_shape(colliders, groups);
        let mut visitor =
            PointCompositeShapeProjWithFeatureBestFirstVisitor::new(&pipeline_shape, point, false);
        self.quadtree
            .traverse_best_first(&mut visitor)
            .map(|h| (h.1 .1 .0, h.1 .0, h.1 .1 .1))
    }

    /// Casts a shape at a constant linear velocity and retrieve the first collider it hits.
    ///
    /// This is similar to ray-casting except that we are casting a whole shape instead of
    /// just a point (the ray origin).
    ///
    /// # Parameters
    /// * `colliders` - The set of colliders taking part in this pipeline.
    /// * `shape_pos` - The initial position of the shape to cast.
    /// * `shape_vel` - The constant velocity of the shape to cast (i.e. the cast direction).
    /// * `shape` - The shape to cast.
    /// * `max_toi` - The maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the distance traveled by the shape to `shapeVel.norm() * maxToi`.
    /// * `groups` - The bit groups and filter associated to the shape to cast, in order to only
    ///   test on colliders with collision groups compatible with this group.
    pub fn cast_shape<'a>(
        &self,
        colliders: &'a ColliderSet,
        shape_pos: &Isometry<Real>,
        shape_vel: &Vector<Real>,
        shape: &dyn Shape,
        max_toi: Real,
        target_distance: Real,
        groups: InteractionGroups,
    ) -> Option<(ColliderHandle, TOI)> {
        let pipeline_shape = self.as_composite_shape(colliders, groups);
        let mut visitor = TOICompositeShapeShapeBestFirstVisitor::new(
            &*self.query_dispatcher,
            shape_pos,
            shape_vel,
            &pipeline_shape,
            shape,
            max_toi,
            target_distance,
        );
        self.quadtree.traverse_best_first(&mut visitor).map(|h| h.1)
    }

    /// Casts a shape with an arbitrary continuous motion and retrieve the first collider it hits.
    ///
    /// # Parameters
    /// * `colliders` - The set of colliders taking part in this pipeline.
    /// * `shape_motion` - The motion of the shape.
    /// * `shape` - The shape to cast.
    /// * `max_toi` - The maximum time-of-impact that can be reported by this cast. This effectively
    ///   limits the distance traveled by the shape to `shapeVel.norm() * maxToi`.
    /// * `groups` - The bit groups and filter associated to the shape to cast, in order to only
    ///   test on colliders with collision groups compatible with this group.
    pub fn nonlinear_cast_shape(
        &self,
        colliders: &ColliderSet,
        shape_motion: &dyn RigidMotion,
        shape: &dyn Shape,
        max_toi: Real,
        target_distance: Real,
        groups: InteractionGroups,
    ) -> Option<(ColliderHandle, TOI)> {
        let pipeline_shape = self.as_composite_shape(colliders, groups);
        let mut visitor = NonlinearTOICompositeShapeShapeBestFirstVisitor::new(
            &*self.query_dispatcher,
            shape_motion,
            &pipeline_shape,
            shape,
            max_toi,
            target_distance,
        );
        self.quadtree.traverse_best_first(&mut visitor).map(|h| h.1)
    }

    /// Retrieve all the colliders intersecting the given shape.
    ///
    /// # Parameters
    /// * `colliders` - The set of colliders taking part in this pipeline.
    /// * `shapePos` - The position of the shape to test.
    /// * `shapeRot` - The orientation of the shape to test.
    /// * `shape` - The shape to test.
    /// * `groups` - The bit groups and filter associated to the shape to test, in order to only
    ///   test on colliders with collision groups compatible with this group.
    /// * `callback` - A function called with the handles of each collider intersecting the `shape`.
    pub fn intersections_with_shape<'a>(
        &self,
        colliders: &'a ColliderSet,
        shape_pos: &Isometry<Real>,
        shape: &dyn Shape,
        groups: InteractionGroups,
        mut callback: impl FnMut(ColliderHandle, &'a Collider) -> bool,
    ) {
        let dispatcher = &*self.query_dispatcher;
        let inv_shape_pos = shape_pos.inverse();

        let mut leaf_callback = &mut |handle: &ColliderHandle| {
            if let Some(coll) = colliders.get(*handle) {
                if coll.collision_groups.test(groups) {
                    let pos12 = inv_shape_pos * coll.position();

                    if dispatcher.intersection_test(&pos12, shape, coll.shape()) == Ok(true) {
                        return callback(*handle, coll);
                    }
                }
            }

            true
        };

        let shape_aabb = shape.compute_aabb(shape_pos);
        let mut visitor = BoundingVolumeIntersectionsVisitor::new(&shape_aabb, &mut leaf_callback);

        self.quadtree.traverse_depth_first(&mut visitor);
    }
}