1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
use crate::dynamics::solver::MotorParameters;
use crate::dynamics::{FixedJoint, MotorModel, PrismaticJoint, RevoluteJoint};
use crate::math::{Isometry, Point, Real, Rotation, UnitVector, Vector, SPATIAL_DIM};
use crate::utils::{WBasis, WReal};

#[cfg(feature = "dim3")]
use crate::dynamics::SphericalJoint;

#[cfg(feature = "dim3")]
bitflags::bitflags! {
    /// A bit mask identifying multiple degrees of freedom of a joint.
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    pub struct JointAxesMask: u8 {
        /// The translational degree of freedom along the local X axis of a joint.
        const X = 1 << 0;
        /// The translational degree of freedom along the local Y axis of a joint.
        const Y = 1 << 1;
        /// The translational degree of freedom along the local Z axis of a joint.
        const Z = 1 << 2;
        /// The angular degree of freedom along the local X axis of a joint.
        const ANG_X = 1 << 3;
        /// The angular degree of freedom along the local Y axis of a joint.
        const ANG_Y = 1 << 4;
        /// The angular degree of freedom along the local Z axis of a joint.
        const ANG_Z = 1 << 5;
        /// The set of degrees of freedom locked by a revolute joint.
        const LOCKED_REVOLUTE_AXES = Self::X.bits | Self::Y.bits | Self::Z.bits | Self::ANG_Y.bits | Self::ANG_Z.bits;
        /// The set of degrees of freedom locked by a prismatic joint.
        const LOCKED_PRISMATIC_AXES = Self::Y.bits | Self::Z.bits | Self::ANG_X.bits | Self::ANG_Y.bits | Self::ANG_Z.bits;
        /// The set of degrees of freedom locked by a fixed joint.
        const LOCKED_FIXED_AXES = Self::X.bits | Self::Y.bits | Self::Z.bits | Self::ANG_X.bits | Self::ANG_Y.bits | Self::ANG_Z.bits;
        /// The set of degrees of freedom locked by a spherical joint.
        const LOCKED_SPHERICAL_AXES = Self::X.bits | Self::Y.bits | Self::Z.bits;
        /// The set of degrees of freedom left free by a revolute joint.
        const FREE_REVOLUTE_AXES = Self::ANG_X.bits;
        /// The set of degrees of freedom left free by a prismatic joint.
        const FREE_PRISMATIC_AXES = Self::X.bits;
        /// The set of degrees of freedom left free by a fixed joint.
        const FREE_FIXED_AXES = 0;
        /// The set of degrees of freedom left free by a spherical joint.
        const FREE_SPHERICAL_AXES = Self::ANG_X.bits | Self::ANG_Y.bits | Self::ANG_Z.bits;
        /// The set of all translational degrees of freedom.
        const LIN_AXES = Self::X.bits() | Self::Y.bits() | Self::Z.bits();
        /// The set of all angular degrees of freedom.
        const ANG_AXES = Self::ANG_X.bits() | Self::ANG_Y.bits() | Self::ANG_Z.bits();
    }
}

#[cfg(feature = "dim2")]
bitflags::bitflags! {
    /// A bit mask identifying multiple degrees of freedom of a joint.
    #[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
    pub struct JointAxesMask: u8 {
        /// The translational degree of freedom along the local X axis of a joint.
        const X = 1 << 0;
        /// The translational degree of freedom along the local Y axis of a joint.
        const Y = 1 << 1;
        /// The angular degree of freedom of a joint.
        const ANG_X = 1 << 2;
        /// The set of degrees of freedom locked by a revolute joint.
        const LOCKED_REVOLUTE_AXES = Self::X.bits | Self::Y.bits;
        /// The set of degrees of freedom locked by a prismatic joint.
        const LOCKED_PRISMATIC_AXES = Self::Y.bits | Self::ANG_X.bits;
        /// The set of degrees of freedom locked by a fixed joint.
        const LOCKED_FIXED_AXES = Self::X.bits | Self::Y.bits | Self::ANG_X.bits;
        /// The set of degrees of freedom left free by a revolute joint.
        const FREE_REVOLUTE_AXES = Self::ANG_X.bits;
        /// The set of degrees of freedom left free by a prismatic joint.
        const FREE_PRISMATIC_AXES = Self::X.bits;
        /// The set of degrees of freedom left free by a fixed joint.
        const FREE_FIXED_AXES = 0;
        /// The set of all translational degrees of freedom.
        const LIN_AXES = Self::X.bits() | Self::Y.bits();
        /// The set of all angular degrees of freedom.
        const ANG_AXES = Self::ANG_X.bits();
    }
}

impl Default for JointAxesMask {
    fn default() -> Self {
        Self::empty()
    }
}

/// Identifiers of degrees of freedoms of a joint.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum JointAxis {
    /// The translational degree of freedom along the joint’s local X axis.
    X = 0,
    /// The translational degree of freedom along the joint’s local Y axis.
    Y,
    /// The translational degree of freedom along the joint’s local Z axis.
    #[cfg(feature = "dim3")]
    Z,
    /// The rotational degree of freedom along the joint’s local X axis.
    AngX,
    /// The rotational degree of freedom along the joint’s local Y axis.
    #[cfg(feature = "dim3")]
    AngY,
    /// The rotational degree of freedom along the joint’s local Z axis.
    #[cfg(feature = "dim3")]
    AngZ,
}

impl From<JointAxis> for JointAxesMask {
    fn from(axis: JointAxis) -> Self {
        JointAxesMask::from_bits(1 << axis as usize).unwrap()
    }
}

/// The limits of a joint along one of its degrees of freedom.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct JointLimits<N> {
    /// The minimum bound of the joint limit.
    pub min: N,
    /// The maximum bound of the joint limit.
    pub max: N,
    /// The impulse applied to enforce the joint’s limit.
    pub impulse: N,
}

impl<N: WReal> Default for JointLimits<N> {
    fn default() -> Self {
        Self {
            min: -N::splat(Real::MAX),
            max: N::splat(Real::MAX),
            impulse: N::splat(0.0),
        }
    }
}

/// A joint’s motor along one of its degrees of freedom.
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct JointMotor {
    /// The target velocity of the motor.
    pub target_vel: Real,
    /// The target position of the motor.
    pub target_pos: Real,
    /// The stiffness coefficient of the motor’s spring-like equation.
    pub stiffness: Real,
    /// The damping coefficient of the motor’s spring-like equation.
    pub damping: Real,
    /// The maximum force this motor can deliver.
    pub max_force: Real,
    /// The impulse applied by this motor.
    pub impulse: Real,
    /// The spring-like model used for simulating this motor.
    pub model: MotorModel,
}

impl Default for JointMotor {
    fn default() -> Self {
        Self {
            target_pos: 0.0,
            target_vel: 0.0,
            stiffness: 0.0,
            damping: 0.0,
            max_force: Real::MAX,
            impulse: 0.0,
            model: MotorModel::AccelerationBased,
        }
    }
}

impl JointMotor {
    pub(crate) fn motor_params(&self, dt: Real) -> MotorParameters<Real> {
        let (erp_inv_dt, cfm_coeff, cfm_gain) =
            self.model
                .combine_coefficients(dt, self.stiffness, self.damping);
        MotorParameters {
            erp_inv_dt,
            cfm_coeff,
            cfm_gain,
            // keep_lhs,
            target_pos: self.target_pos,
            target_vel: self.target_vel,
            max_impulse: self.max_force * dt,
        }
    }
}

#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
#[derive(Copy, Clone, Debug, PartialEq)]
/// A generic joint.
pub struct GenericJoint {
    /// The joint’s frame, expressed in the first rigid-body’s local-space.
    pub local_frame1: Isometry<Real>,
    /// The joint’s frame, expressed in the second rigid-body’s local-space.
    pub local_frame2: Isometry<Real>,
    /// The degrees-of-freedoms locked by this joint.
    pub locked_axes: JointAxesMask,
    /// The degrees-of-freedoms limited by this joint.
    pub limit_axes: JointAxesMask,
    /// The degrees-of-freedoms motorised by this joint.
    pub motor_axes: JointAxesMask,
    /// The coupled degrees of freedom of this joint.
    pub coupled_axes: JointAxesMask,
    /// The limits, along each degrees of freedoms of this joint.
    ///
    /// Note that the limit must also be explicitly enabled by the `limit_axes` bitmask.
    pub limits: [JointLimits<Real>; SPATIAL_DIM],
    /// The motors, along each degrees of freedoms of this joint.
    ///
    /// Note that the mostor must also be explicitly enabled by the `motors` bitmask.
    pub motors: [JointMotor; SPATIAL_DIM],
}

impl Default for GenericJoint {
    fn default() -> Self {
        Self {
            local_frame1: Isometry::identity(),
            local_frame2: Isometry::identity(),
            locked_axes: JointAxesMask::empty(),
            limit_axes: JointAxesMask::empty(),
            motor_axes: JointAxesMask::empty(),
            coupled_axes: JointAxesMask::empty(),
            limits: [JointLimits::default(); SPATIAL_DIM],
            motors: [JointMotor::default(); SPATIAL_DIM],
        }
    }
}

impl GenericJoint {
    /// Creates a new generic joint that locks the specified degrees of freedom.
    #[must_use]
    pub fn new(locked_axes: JointAxesMask) -> Self {
        *Self::default().lock_axes(locked_axes)
    }

    #[cfg(feature = "simd-is-enabled")]
    /// Can this joint use SIMD-accelerated constraint formulations?
    pub(crate) fn supports_simd_constraints(&self) -> bool {
        self.limit_axes.is_empty() && self.motor_axes.is_empty()
    }

    #[doc(hidden)]
    pub fn complete_ang_frame(axis: UnitVector<Real>) -> Rotation<Real> {
        let basis = axis.orthonormal_basis();

        #[cfg(feature = "dim2")]
        {
            use na::{Matrix2, Rotation2, UnitComplex};
            let mat = Matrix2::from_columns(&[axis.into_inner(), basis[0]]);
            let rotmat = Rotation2::from_matrix_unchecked(mat);
            UnitComplex::from_rotation_matrix(&rotmat)
        }

        #[cfg(feature = "dim3")]
        {
            use na::{Matrix3, Rotation3, UnitQuaternion};
            let mat = Matrix3::from_columns(&[axis.into_inner(), basis[0], basis[1]]);
            let rotmat = Rotation3::from_matrix_unchecked(mat);
            UnitQuaternion::from_rotation_matrix(&rotmat)
        }
    }

    /// Add the specified axes to the set of axes locked by this joint.
    pub fn lock_axes(&mut self, axes: JointAxesMask) -> &mut Self {
        self.locked_axes |= axes;
        self
    }

    /// Sets the joint’s frame, expressed in the first rigid-body’s local-space.
    pub fn set_local_frame1(&mut self, local_frame: Isometry<Real>) -> &mut Self {
        self.local_frame1 = local_frame;
        self
    }

    /// Sets the joint’s frame, expressed in the second rigid-body’s local-space.
    pub fn set_local_frame2(&mut self, local_frame: Isometry<Real>) -> &mut Self {
        self.local_frame2 = local_frame;
        self
    }

    /// The principal (local X) axis of this joint, expressed in the first rigid-body’s local-space.
    #[must_use]
    pub fn local_axis1(&self) -> UnitVector<Real> {
        self.local_frame1 * Vector::x_axis()
    }

    /// Sets the principal (local X) axis of this joint, expressed in the first rigid-body’s local-space.
    pub fn set_local_axis1(&mut self, local_axis: UnitVector<Real>) -> &mut Self {
        self.local_frame1.rotation = Self::complete_ang_frame(local_axis);
        self
    }

    /// The principal (local X) axis of this joint, expressed in the second rigid-body’s local-space.
    #[must_use]
    pub fn local_axis2(&self) -> UnitVector<Real> {
        self.local_frame2 * Vector::x_axis()
    }

    /// Sets the principal (local X) axis of this joint, expressed in the second rigid-body’s local-space.
    pub fn set_local_axis2(&mut self, local_axis: UnitVector<Real>) -> &mut Self {
        self.local_frame2.rotation = Self::complete_ang_frame(local_axis);
        self
    }

    /// The anchor of this joint, expressed in the first rigid-body’s local-space.
    #[must_use]
    pub fn local_anchor1(&self) -> Point<Real> {
        self.local_frame1.translation.vector.into()
    }

    /// Sets anchor of this joint, expressed in the first rigid-body’s local-space.
    pub fn set_local_anchor1(&mut self, anchor1: Point<Real>) -> &mut Self {
        self.local_frame1.translation.vector = anchor1.coords;
        self
    }

    /// The anchor of this joint, expressed in the second rigid-body’s local-space.
    #[must_use]
    pub fn local_anchor2(&self) -> Point<Real> {
        self.local_frame2.translation.vector.into()
    }

    /// Sets anchor of this joint, expressed in the second rigid-body’s local-space.
    pub fn set_local_anchor2(&mut self, anchor2: Point<Real>) -> &mut Self {
        self.local_frame2.translation.vector = anchor2.coords;
        self
    }

    /// The joint limits along the specified axis.
    #[must_use]
    pub fn limits(&self, axis: JointAxis) -> Option<&JointLimits<Real>> {
        let i = axis as usize;
        if self.limit_axes.contains(axis.into()) {
            Some(&self.limits[i])
        } else {
            None
        }
    }

    /// Sets the joint limits along the specified axis.
    pub fn set_limits(&mut self, axis: JointAxis, limits: [Real; 2]) -> &mut Self {
        let i = axis as usize;
        self.limit_axes |= axis.into();
        self.limits[i].min = limits[0];
        self.limits[i].max = limits[1];
        self
    }

    /// The spring-like motor model along the specified axis of this joint.
    #[must_use]
    pub fn motor_model(&self, axis: JointAxis) -> Option<MotorModel> {
        let i = axis as usize;
        if self.motor_axes.contains(axis.into()) {
            Some(self.motors[i].model)
        } else {
            None
        }
    }

    /// Set the spring-like model used by the motor to reach the desired target velocity and position.
    pub fn set_motor_model(&mut self, axis: JointAxis, model: MotorModel) -> &mut Self {
        self.motors[axis as usize].model = model;
        self
    }

    /// Sets the target velocity this motor needs to reach.
    pub fn set_motor_velocity(
        &mut self,
        axis: JointAxis,
        target_vel: Real,
        factor: Real,
    ) -> &mut Self {
        self.set_motor(
            axis,
            self.motors[axis as usize].target_pos,
            target_vel,
            0.0,
            factor,
        )
    }

    /// Sets the target angle this motor needs to reach.
    pub fn set_motor_position(
        &mut self,
        axis: JointAxis,
        target_pos: Real,
        stiffness: Real,
        damping: Real,
    ) -> &mut Self {
        self.set_motor(axis, target_pos, 0.0, stiffness, damping)
    }

    /// Sets the maximum force the motor can deliver along the specified axis.
    pub fn set_motor_max_force(&mut self, axis: JointAxis, max_force: Real) -> &mut Self {
        self.motors[axis as usize].max_force = max_force;
        self
    }

    /// The motor affecting the joint’s degree of freedom along the specified axis.
    #[must_use]
    pub fn motor(&self, axis: JointAxis) -> Option<&JointMotor> {
        let i = axis as usize;
        if self.motor_axes.contains(axis.into()) {
            Some(&self.motors[i])
        } else {
            None
        }
    }

    /// Configure both the target angle and target velocity of the motor.
    pub fn set_motor(
        &mut self,
        axis: JointAxis,
        target_pos: Real,
        target_vel: Real,
        stiffness: Real,
        damping: Real,
    ) -> &mut Self {
        self.motor_axes |= axis.into();
        let i = axis as usize;
        self.motors[i].target_vel = target_vel;
        self.motors[i].target_pos = target_pos;
        self.motors[i].stiffness = stiffness;
        self.motors[i].damping = damping;
        self
    }
}

macro_rules! joint_conversion_methods(
    ($as_joint: ident, $as_joint_mut: ident, $Joint: ty, $axes: expr) => {
        /// Converts the joint to its specific variant, if it is one.
        #[must_use]
        pub fn $as_joint(&self) -> Option<&$Joint> {
            if self.locked_axes == $axes {
                // SAFETY: this is OK because the target joint type is
                //         a `repr(transparent)` newtype of `Joint`.
                Some(unsafe { std::mem::transmute(self) })
            } else {
                None
            }
        }

        /// Converts the joint to its specific mutable variant, if it is one.
        #[must_use]
        pub fn $as_joint_mut(&mut self) -> Option<&mut $Joint> {
            if self.locked_axes == $axes {
                // SAFETY: this is OK because the target joint type is
                //         a `repr(transparent)` newtype of `Joint`.
                Some(unsafe { std::mem::transmute(self) })
            } else {
                None
            }
        }
    }
);

impl GenericJoint {
    joint_conversion_methods!(
        as_revolute,
        as_revolute_mut,
        RevoluteJoint,
        JointAxesMask::LOCKED_REVOLUTE_AXES
    );
    joint_conversion_methods!(
        as_fixed,
        as_fixed_mut,
        FixedJoint,
        JointAxesMask::LOCKED_FIXED_AXES
    );
    joint_conversion_methods!(
        as_prismatic,
        as_prismatic_mut,
        PrismaticJoint,
        JointAxesMask::LOCKED_PRISMATIC_AXES
    );

    #[cfg(feature = "dim3")]
    joint_conversion_methods!(
        as_spherical,
        as_spherical_mut,
        SphericalJoint,
        JointAxesMask::LOCKED_SPHERICAL_AXES
    );
}

/// Create generic joints using the builder pattern.
#[derive(Copy, Clone, Debug)]
pub struct GenericJointBuilder(GenericJoint);

impl GenericJointBuilder {
    /// Creates a new generic joint builder.
    #[must_use]
    pub fn new(locked_axes: JointAxesMask) -> Self {
        Self(GenericJoint::new(locked_axes))
    }

    /// Sets the degrees of freedom locked by the joint.
    #[must_use]
    pub fn locked_axes(mut self, axes: JointAxesMask) -> Self {
        self.0.locked_axes = axes;
        self
    }

    /// Sets the joint’s frame, expressed in the first rigid-body’s local-space.
    #[must_use]
    pub fn local_frame1(mut self, local_frame: Isometry<Real>) -> Self {
        self.0.set_local_frame1(local_frame);
        self
    }

    /// Sets the joint’s frame, expressed in the second rigid-body’s local-space.
    #[must_use]
    pub fn local_frame2(mut self, local_frame: Isometry<Real>) -> Self {
        self.0.set_local_frame2(local_frame);
        self
    }

    /// Sets the principal (local X) axis of this joint, expressed in the first rigid-body’s local-space.
    #[must_use]
    pub fn local_axis1(mut self, local_axis: UnitVector<Real>) -> Self {
        self.0.set_local_axis1(local_axis);
        self
    }

    /// Sets the principal (local X) axis of this joint, expressed in the second rigid-body’s local-space.
    #[must_use]
    pub fn local_axis2(mut self, local_axis: UnitVector<Real>) -> Self {
        self.0.set_local_axis2(local_axis);
        self
    }

    /// Sets the anchor of this joint, expressed in the first rigid-body’s local-space.
    #[must_use]
    pub fn local_anchor1(mut self, anchor1: Point<Real>) -> Self {
        self.0.set_local_anchor1(anchor1);
        self
    }

    /// Sets the anchor of this joint, expressed in the second rigid-body’s local-space.
    #[must_use]
    pub fn local_anchor2(mut self, anchor2: Point<Real>) -> Self {
        self.0.set_local_anchor2(anchor2);
        self
    }

    /// Sets the joint limits along the specified axis.
    #[must_use]
    pub fn limits(mut self, axis: JointAxis, limits: [Real; 2]) -> Self {
        self.0.set_limits(axis, limits);
        self
    }

    /// Sets the coupled degrees of freedom for this joint’s limits and motor.
    #[must_use]
    pub fn coupled_axes(mut self, axes: JointAxesMask) -> Self {
        self.0.coupled_axes = axes;
        self
    }

    /// Set the spring-like model used by the motor to reach the desired target velocity and position.
    #[must_use]
    pub fn motor_model(mut self, axis: JointAxis, model: MotorModel) -> Self {
        self.0.set_motor_model(axis, model);
        self
    }

    /// Sets the target velocity this motor needs to reach.
    #[must_use]
    pub fn motor_velocity(mut self, axis: JointAxis, target_vel: Real, factor: Real) -> Self {
        self.0.set_motor_velocity(axis, target_vel, factor);
        self
    }

    /// Sets the target angle this motor needs to reach.
    #[must_use]
    pub fn motor_position(
        mut self,
        axis: JointAxis,
        target_pos: Real,
        stiffness: Real,
        damping: Real,
    ) -> Self {
        self.0
            .set_motor_position(axis, target_pos, stiffness, damping);
        self
    }

    /// Configure both the target angle and target velocity of the motor.
    #[must_use]
    pub fn set_motor(
        mut self,
        axis: JointAxis,
        target_pos: Real,
        target_vel: Real,
        stiffness: Real,
        damping: Real,
    ) -> Self {
        self.0
            .set_motor(axis, target_pos, target_vel, stiffness, damping);
        self
    }

    /// Sets the maximum force the motor can deliver along the specified axis.
    #[must_use]
    pub fn motor_max_force(mut self, axis: JointAxis, max_force: Real) -> Self {
        self.0.set_motor_max_force(axis, max_force);
        self
    }

    /// Builds the generic joint.
    #[must_use]
    pub fn build(self) -> GenericJoint {
        self.0
    }
}

impl Into<GenericJoint> for GenericJointBuilder {
    fn into(self) -> GenericJoint {
        self.0
    }
}