1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
//! # Rapier
//!
//! Rapier is a set of two Rust crates `rapier2d` and `rapier3d` for efficient cross-platform
//! physics simulation. It target application include video games, animation, robotics, etc.
//!
//! Rapier has some unique features for collaborative applications:
//! - The ability to snapshot the state of the physics engine, and restore it later.
//! - The ability to run a perfectly deterministic simulation on different machine, as long as they
//! are compliant with the IEEE 754-2008 floating point standard.

#![deny(missing_docs)]

pub extern crate nalgebra as na;
#[cfg(feature = "dim2")]
pub extern crate ncollide2d as ncollide;
#[cfg(feature = "dim3")]
pub extern crate ncollide3d as ncollide;
#[cfg(feature = "serde")]
#[macro_use]
extern crate serde;
extern crate num_traits as num;
// #[macro_use]
// extern crate array_macro;

#[cfg(feature = "parallel")]
pub use rayon;

#[cfg(all(
    feature = "simd-is-enabled",
    not(feature = "simd-stable"),
    not(feature = "simd-nightly")
))]
std::compile_error!("The `simd-is-enabled` feature should not be enabled explicitly. Please enable the `simd-stable` or the `simd-nightly` feature instead.");
#[cfg(all(feature = "simd-is-enabled", feature = "enhanced-determinism"))]
std::compile_error!(
    "SIMD cannot be enabled when the `enhanced-determinism` feature is also enabled."
);

macro_rules! enable_flush_to_zero(
    () => {
        let _flush_to_zero = crate::utils::FlushToZeroDenormalsAreZeroFlags::flush_denormal_to_zero();
    }
);

#[cfg(feature = "simd-is-enabled")]
macro_rules! array(
    ($callback: expr; SIMD_WIDTH) => {
        {
            #[inline(always)]
            #[allow(dead_code)]
            fn create_arr<T>(mut callback: impl FnMut(usize) -> T) -> [T; SIMD_WIDTH] {
                [callback(0usize), callback(1usize), callback(2usize), callback(3usize)]

                // [callback(0usize), callback(1usize), callback(2usize), callback(3usize),
                //  callback(4usize), callback(5usize), callback(6usize), callback(7usize)]

                // [callback(0usize), callback(1usize), callback(2usize), callback(3usize),
                //  callback(4usize), callback(5usize), callback(6usize), callback(7usize),
                //  callback(8usize), callback(9usize), callback(10usize), callback(11usize),
                //  callback(12usize), callback(13usize), callback(14usize), callback(15usize)]
            }

            create_arr($callback)
        }
    }
);

#[allow(unused_macros)]
macro_rules! par_iter {
    ($t: expr) => {{
        #[cfg(not(feature = "parallel"))]
        let it = $t.iter();

        #[cfg(feature = "parallel")]
        let it = $t.par_iter();
        it
    }};
}

macro_rules! par_iter_mut {
    ($t: expr) => {{
        #[cfg(not(feature = "parallel"))]
        let it = $t.iter_mut();

        #[cfg(feature = "parallel")]
        let it = $t.par_iter_mut();
        it
    }};
}

// macro_rules! par_chunks_mut {
//     ($t: expr, $sz: expr) => {{
//         #[cfg(not(feature = "parallel"))]
//         let it = $t.chunks_mut($sz);
//
//         #[cfg(feature = "parallel")]
//         let it = $t.par_chunks_mut($sz);
//         it
//     }};
// }

#[allow(unused_macros)]
macro_rules! try_ret {
    ($val: expr) => {
        try_ret!($val, ())
    };
    ($val: expr, $ret: expr) => {
        if let Some(val) = $val {
            val
        } else {
            return $ret;
        }
    };
}

// macro_rules! try_continue {
//     ($val: expr) => {
//         if let Some(val) = $val {
//             val
//         } else {
//             continue;
//         }
//     };
// }

pub(crate) const INVALID_U32: u32 = u32::MAX;
pub(crate) const INVALID_U64: u64 = u64::MAX;
pub(crate) const INVALID_USIZE: usize = INVALID_U32 as usize;

pub mod counters;
pub mod data;
pub mod dynamics;
pub mod geometry;
pub mod pipeline;
pub mod utils;

#[cfg(feature = "dim2")]
/// Math primitives used throughout Rapier.
pub mod math {
    #[cfg(feature = "simd-is-enabled")]
    pub use super::simd::*;
    use na::{Isometry2, Matrix2, Point2, Translation2, UnitComplex, Vector2, Vector3, U1, U2};

    /// The dimension of the physics simulated by this crate.
    pub const DIM: usize = 2;
    /// The maximum number of point a contact manifold can hold.
    pub const MAX_MANIFOLD_POINTS: usize = 2;
    /// The dimension of the physics simulated by this crate, given as a type-level-integer.
    pub type Dim = U2;
    /// The maximum number of angular degrees of freedom of a rigid body given as a type-level-integer.
    pub type AngDim = U1;
    /// A 2D isometry, i.e., a rotation followed by a translation.
    pub type Isometry<N> = Isometry2<N>;
    /// A 2D vector.
    pub type Vector<N> = Vector2<N>;
    /// A scalar used for angular velocity.
    ///
    /// This is called `AngVector` for coherence with the 3D version of this crate.
    pub type AngVector<N> = N;
    /// A 2D point.
    pub type Point<N> = Point2<N>;
    /// A 2D rotation expressed as an unit complex number.
    pub type Rotation<N> = UnitComplex<N>;
    /// A 2D translation.
    pub type Translation<N> = Translation2<N>;
    /// The angular inertia of a rigid body.
    pub type AngularInertia<N> = N;
    /// The principal angular inertia of a rigid body.
    pub type PrincipalAngularInertia<N> = N;
    /// A matrix that represent the cross product with a given vector.
    pub type CrossMatrix<N> = Vector2<N>;
    /// A 2x2 matrix.
    pub type Matrix<N> = Matrix2<N>;
    /// A vector with a dimension equal to the maximum number of degrees of freedom of a rigid body.
    pub type SpacialVector<N> = Vector3<N>;
    /// A 2D symmetric-definite-positive matrix.
    pub type SdpMatrix<N> = crate::utils::SdpMatrix2<N>;
}

#[cfg(feature = "dim3")]
/// Math primitives used throughout Rapier.
pub mod math {
    #[cfg(feature = "simd-is-enabled")]
    pub use super::simd::*;
    use na::{Isometry3, Matrix3, Point3, Translation3, UnitQuaternion, Vector3, Vector6, U3};

    /// The dimension of the physics simulated by this crate.
    pub const DIM: usize = 3;
    /// The maximum number of point a contact manifold can hold.
    pub const MAX_MANIFOLD_POINTS: usize = 4;
    /// The dimension of the physics simulated by this crate, given as a type-level-integer.
    pub type Dim = U3;
    /// The maximum number of angular degrees of freedom of a rigid body given as a type-level-integer.
    pub type AngDim = U3;
    /// A 3D isometry, i.e., a rotation followed by a translation.
    pub type Isometry<N> = Isometry3<N>;
    /// A 3D vector.
    pub type Vector<N> = Vector3<N>;
    /// An axis-angle vector used for angular velocity.
    pub type AngVector<N> = Vector3<N>;
    /// A 3D point.
    pub type Point<N> = Point3<N>;
    /// A 3D rotation expressed as an unit quaternion.
    pub type Rotation<N> = UnitQuaternion<N>;
    /// A 3D translation.
    pub type Translation<N> = Translation3<N>;
    /// The angular inertia of a rigid body.
    pub type AngularInertia<N> = crate::utils::SdpMatrix3<N>;
    /// The principal angular inertia of a rigid body.
    pub type PrincipalAngularInertia<N> = Vector3<N>;
    /// A matrix that represent the cross product with a given vector.
    pub type CrossMatrix<N> = Matrix3<N>;
    /// A 3x3 matrix.
    pub type Matrix<N> = Matrix3<N>;
    /// A vector with a dimension equal to the maximum number of degrees of freedom of a rigid body.
    pub type SpacialVector<N> = Vector6<N>;
    /// A 3D symmetric-definite-positive matrix.
    pub type SdpMatrix<N> = crate::utils::SdpMatrix3<N>;
}

#[cfg(feature = "simd-is-enabled")]
mod simd {
    #[allow(unused_imports)]
    #[cfg(feature = "simd-nightly")]
    use simba::simd::{f32x16, f32x4, f32x8, m32x16, m32x4, m32x8, u8x16, u8x4, u8x8};
    #[cfg(feature = "simd-stable")]
    use simba::simd::{WideBoolF32x4, WideF32x4};

    /// The number of lanes of a SIMD number.
    pub const SIMD_WIDTH: usize = 4;
    /// SIMD_WIDTH - 1
    pub const SIMD_LAST_INDEX: usize = 3;
    #[cfg(not(feature = "simd-nightly"))]
    /// A SIMD float with SIMD_WIDTH lanes.
    pub type SimdFloat = WideF32x4;
    #[cfg(not(feature = "simd-nightly"))]
    /// A SIMD bool with SIMD_WIDTH lanes.
    pub type SimdBool = WideBoolF32x4;
    #[cfg(feature = "simd-nightly")]
    /// A SIMD float with SIMD_WIDTH lanes.
    pub type SimdFloat = f32x4;
    #[cfg(feature = "simd-nightly")]
    /// A bool float with SIMD_WIDTH lanes.
    pub type SimdBool = m32x4;

    // pub const SIMD_WIDTH: usize = 8;
    // pub const SIMD_LAST_INDEX: usize = 7;
    // pub type SimdFloat = f32x8;
    // pub type SimdBool = m32x8;

    // pub const SIMD_WIDTH: usize = 16;
    // pub const SIMD_LAST_INDEX: usize = 15;
    // pub type SimdFloat = f32x16;
    // pub type SimdBool = m32x16;
}