1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
// Copyright 2019. The Tari Project
//
// Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
// following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
// disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
// following disclaimer in the documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
// products derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
// INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
// USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//! # randomx-rs
//!
//! The `randomx-rs` crate provides bindings to the `RandomX` proof-of-work (PoW) system as well
//! as the functionality to utilize these bindings.
//!
mod bindings;
#[macro_use]
extern crate bitflags;
extern crate libc;

use bindings::{
    randomx_alloc_cache, randomx_alloc_dataset, randomx_cache, randomx_calculate_hash,
    randomx_create_vm, randomx_dataset, randomx_dataset_item_count, randomx_destroy_vm,
    randomx_get_dataset_memory, randomx_init_cache, randomx_init_dataset, randomx_release_cache,
    randomx_release_dataset, randomx_vm, randomx_vm_set_cache, randomx_vm_set_dataset,
    RANDOMX_DATASET_ITEM_SIZE, RANDOMX_HASH_SIZE,
};

use crate::bindings::{
    randomx_calculate_hash_first, randomx_calculate_hash_last, randomx_calculate_hash_next,
    randomx_get_flags,
};
use libc::{c_ulong, c_void};
use std::ptr;
use thiserror::Error;

bitflags! {
/// Indicates to the RandomX library which configuration options to use.
    pub struct RandomXFlag: u32 {
    /// All flags not set, works on all platforms, however is the slowest
        const FLAG_DEFAULT      =0b0000_0000;
    /// Allocate memory in large pages
        const FLAG_LARGE_PAGES  =0b0000_0001;
    /// Use hardware accelerated AES
        const FLAG_HARD_AES     =0b0000_0010;
    /// Use the full dataset
        const FLAG_FULL_MEM     =0b0000_0100;
    /// Use JIT compilation support
        const FLAG_JIT          =0b0000_1000;
    /// When combined with FLAG_JIT, the JIT pages are never writable and executable at the
    /// same time
        const FLAG_SECURE       =0b0001_0000;
    /// Optimize Argon2 for CPUs with the SSSE3 instruction set
        const FLAG_ARGON2_SSSE3 =0b0010_0000;
    /// Optimize Argon2 for CPUs with the AVX2 instruction set
        const FLAG_ARGON2_AVX2  =0b0100_0000;
    /// Optimize Argon2 for CPUs without the AVX2 or SSSE3 instruction sets
        const FLAG_ARGON2       =0b0110_0000;
    }
}

impl RandomXFlag {
    /// Returns the recommended flags to be used.
    ///
    /// Does not include:
    /// * FLAG_LARGE_PAGES
    /// * FLAG_FULL_MEM
    /// * FLAG_SECURE
    ///
    /// The above flags need to be set manually, if required.
    pub fn get_recommended_flags() -> RandomXFlag {
        // c code will always return a value
        RandomXFlag {
            bits: unsafe { randomx_get_flags() },
        }
    }
}

impl Default for RandomXFlag {
    /// Default value for RandomXFlag
    fn default() -> RandomXFlag {
        RandomXFlag::FLAG_DEFAULT
    }
}

#[derive(Debug, Clone, Error)]
/// Custom error enum
pub enum RandomXError {
    #[error("Problem creating the RandomX object:{0}")]
    CreationError(String),
    #[error("Problem with configuration flags:{0}")]
    FlagConfigError(String),
    #[error("Problem with parameters supplied:{0}")]
    ParameterError(String),
    #[error("Unknown problem running RandomX:{0}")]
    Other(String),
}

#[derive(Debug)]
/// Cache structure
pub struct RandomXCache {
    cache: *mut randomx_cache,
}

impl Drop for RandomXCache {
    /// De-allocates memory for the `cache` object
    fn drop(&mut self) {
        unsafe {
            randomx_release_cache(self.cache);
        }
    }
}

impl RandomXCache {
    /// Creates a new cache object, allocates memory to the `cache` object and initializes it with
    /// he key value, error on failure.
    ///
    /// `flags` is any combination of the following two flags:
    /// * FLAG_LARGE_PAGES
    /// * FLAG_JIT
    ///
    /// and (optionally) one of the following flags (depending on instruction set supported):
    /// * FLAG_ARGON2_SSSE3
    /// * FLAG_ARGON2_AVX2
    ///
    /// `key` is a sequence of u8 used to initialize SuperScalarHash.
    pub fn new(flags: RandomXFlag, key: &[u8]) -> Result<RandomXCache, RandomXError> {
        if key.is_empty() {
            return Err(RandomXError::ParameterError("key is empty".to_string()));
        };
        let test = unsafe { randomx_alloc_cache(flags.bits) };
        if test.is_null() {
            Err(RandomXError::CreationError(
                "Could not allocate cache".to_string(),
            ))
        } else {
            let result = RandomXCache { cache: test };
            let key_ptr = key.as_ptr() as *mut c_void;
            let key_size = key.len() as usize;
            unsafe {
                //no way to check if this fails, c code does not return anything
                randomx_init_cache(result.cache, key_ptr, key_size);
            }
            Ok(result)
        }
    }
}

#[derive(Debug)]
/// Dataset structure
pub struct RandomXDataset {
    dataset: *mut randomx_dataset,
    dataset_start: c_ulong,
    dataset_count: c_ulong,
}

impl Drop for RandomXDataset {
    /// De-allocates memory for the `dataset` object.
    fn drop(&mut self) {
        unsafe {
            randomx_release_dataset(self.dataset);
        }
    }
}

impl RandomXDataset {
    /// Creates a new dataset object, allocates memory to the `dataset` object and initializes it,
    /// error on failure.
    ///
    /// `flags` is one of the following:
    /// * FLAG_DEFAULT
    /// * FLAG_LARGE_PAGES
    ///
    /// `cache` is a cache object.
    ///
    /// `start` is the item number where initialization should start, recommended to pass in 0.
    pub fn new(
        flags: RandomXFlag,
        cache: &RandomXCache,
        start: c_ulong,
    ) -> Result<RandomXDataset, RandomXError> {
        let count = c_ulong::from(RANDOMX_DATASET_ITEM_SIZE - 1) - start;
        let test = unsafe { randomx_alloc_dataset(flags.bits) };
        if test.is_null() {
            Err(RandomXError::CreationError(
                "Could not allocate dataset".to_string(),
            ))
        } else {
            let result = RandomXDataset {
                dataset: test,
                dataset_start: start,
                dataset_count: count,
            };
            let item_count = match result.count() {
                Ok(v) => v,
                Err(err) => {
                    return Err(RandomXError::CreationError(format!(
                        "Could not get dataset count:{}",
                        err
                    )))
                }
            };
            // Mirror the assert checks inside randomx_init_dataset call
            if !((start < (item_count as c_ulong) && count <= (item_count as c_ulong))
                || (start + (item_count as c_ulong) <= count))
            {
                return Err(RandomXError::CreationError(format!("Dataset `start` or `count` was out of bounds: start:{}, count:{}, actual count:{}", start,count, item_count)));
            }
            unsafe {
                //no way to check if this fails, c code does not return anything
                randomx_init_dataset(
                    result.dataset,
                    cache.cache,
                    start as c_ulong,
                    count as c_ulong,
                );
            }
            Ok(result)
        }
    }

    /// Returns the number of items in the `dataset` or an error on failure.
    pub fn count(&self) -> Result<u64, RandomXError> {
        match unsafe { randomx_dataset_item_count() } {
            0 => Err(RandomXError::Other("Dataset item count was 0".to_string())),
            x => Ok(x as u64),
        }
    }

    /// Returns the values of the internal memory buffer of the `dataset` or an error on failure.
    pub fn get_data(&self) -> Result<Vec<u8>, RandomXError> {
        let memory = unsafe { randomx_get_dataset_memory(self.dataset) };
        if memory.is_null() {
            return Err(RandomXError::Other(
                "Could not get dataset memory".to_string(),
            ));
        }
        let mut result: Vec<u8> = vec![0u8; self.dataset_count as usize];
        unsafe {
            libc::memcpy(
                result.as_mut_ptr() as *mut c_void,
                memory,
                self.dataset_count as usize,
            );
        }
        Ok(result)
    }
}

#[derive(Debug)]
/// VM structure
pub struct RandomXVM {
    flags: RandomXFlag,
    vm: *mut randomx_vm,
}

impl Drop for RandomXVM {
    /// De-allocates memory for the `VM` object.
    fn drop(&mut self) {
        unsafe {
            randomx_destroy_vm(self.vm);
        }
    }
}

impl RandomXVM {
    /// Creates a new `VM` and initializes it, error on failure.
    ///
    /// `flags` is any combination of the following 5 flags:
    /// * FLAG_LARGE_PAGES
    /// * FLAG_HARD_AES
    /// * FLAG_FULL_MEM
    /// * FLAG_JIT
    /// * FLAG_SECURE
    ///
    /// Or
    ///
    /// * FLAG_DEFAULT
    ///
    /// `cache` is a cache object, optional if FLAG_FULL_MEM is set.
    ///
    /// `dataset` is a dataset object, optional if FLAG_FULL_MEM is not set.
    pub fn new(
        flags: RandomXFlag,
        cache: Option<&RandomXCache>,
        dataset: Option<&RandomXDataset>,
    ) -> Result<RandomXVM, RandomXError> {
        let test: *mut randomx_vm;
        let mut is_full_mem = false;
        let flag_full_mem = RandomXFlag::FLAG_FULL_MEM;

        // intersection of flags
        if flags & flag_full_mem == flag_full_mem {
            is_full_mem = true;
        }

        if cache.is_none() && !is_full_mem {
            return Err(RandomXError::FlagConfigError(
                "No cache and FLAG_FULL_MEM not set".to_string(),
            ));
        }

        if dataset.is_none() && is_full_mem {
            return Err(RandomXError::FlagConfigError(
                "No dataset and FLAG_FULL_MEM set".to_string(),
            ));
        }

        match cache {
            Some(stash) => match dataset {
                Some(data) => unsafe {
                    test = randomx_create_vm(flags.bits, stash.cache, data.dataset)
                },
                None => unsafe {
                    test = randomx_create_vm(flags.bits, stash.cache, ptr::null_mut())
                },
            },
            None => match dataset {
                Some(data) => unsafe {
                    test = randomx_create_vm(flags.bits, ptr::null_mut(), data.dataset)
                },
                None => test = ptr::null_mut(),
            },
        }

        if test.is_null() {
            return Err(RandomXError::CreationError("Failed to allocate VM".to_string()));
        }

        let result = RandomXVM { vm: test, flags };
        Ok(result)
    }

    /// Re-initializes the `VM` with a new cache that was initialised without
    /// RandomXFlag::FLAG_FULL_MEM.
    pub fn reinit_cache(&self, cache: &RandomXCache) -> Result<(), RandomXError> {
        if self.flags & RandomXFlag::FLAG_FULL_MEM == RandomXFlag::FLAG_FULL_MEM {
            return Err(RandomXError::FlagConfigError(
                "Cannot reinit cache with FLAG_FULL_MEM set".to_string(),
            ));
        }
        //no way to check if this fails, c code does not return anything
        unsafe {
            randomx_vm_set_cache(self.vm, cache.cache);
        }
        Ok(())
    }

    /// Re-initializes the `VM` with a new dataset that was initialised with
    /// RandomXFlag::FLAG_FULL_MEM.
    pub fn reinit_dataset(&self, dataset: &RandomXDataset) -> Result<(), RandomXError> {
        if self.flags & RandomXFlag::FLAG_FULL_MEM != RandomXFlag::FLAG_FULL_MEM {
            return Err(RandomXError::FlagConfigError(
                "Cannot reinit dataset without FLAG_FULL_MEM set".to_string(),
            ));
        }
        //no way to check if this fails, c code does not return anything
        unsafe {
            randomx_vm_set_dataset(self.vm, dataset.dataset);
        }
        Ok(())
    }

    /// Calculates a RandomX hash value and returns it, error on failure.
    ///
    /// `input` is a sequence of u8 to be hashed.
    pub fn calculate_hash(&self, input: &[u8]) -> Result<Vec<u8>, RandomXError> {
        if input.is_empty() {
            return Err(RandomXError::ParameterError("input was empty".to_string()));
        };
        let size_input = input.len() as usize;
        let input_ptr = input.as_ptr() as *mut c_void;
        let arr = [0; RANDOMX_HASH_SIZE as usize];
        let output_ptr = arr.as_ptr() as *mut c_void;
        unsafe {
            randomx_calculate_hash(self.vm, input_ptr, size_input, output_ptr);
        }
        // if this failed, arr should still be empty
        if arr == [0; RANDOMX_HASH_SIZE as usize] {
            return Err(RandomXError::Other(
                "RandomX calculated hash was empty".to_string(),
            ));
        }
        let result = arr.to_vec();
        Ok(result)
    }

    /// Calculates hashes from a set of inputs.
    ///
    /// `input` is an array of a sequence of u8 to be hashed.
    #[allow(clippy::needless_range_loop)] // Range loop is not only for indexing `input`
    pub fn calculate_hash_set(&self, input: &[&[u8]]) -> Result<Vec<Vec<u8>>, RandomXError> {
        if input.is_empty() {
            // Empty set
            return Err(RandomXError::ParameterError("input was empty".to_string()));
        }

        let mut result = Vec::new();
        // For single input
        if input.len() == 1 {
            let hash_result = self.calculate_hash(input[0]);
            return match hash_result {
                Ok(hash) => {
                    result.push(hash);
                    Ok(result)
                }
                Err(e) => Err(e),
            };
        }

        // For multiple inputs
        let mut output_ptr: *mut c_void = ptr::null_mut();
        let arr = [0; RANDOMX_HASH_SIZE as usize];

        // Not len() as last iteration assigns final hash
        let iterations = input.len() + 1;
        for i in 0..iterations {
            if i != iterations - 1 {
                if input[i].is_empty() {
                    // Stop calculations
                    if arr != [0; RANDOMX_HASH_SIZE as usize] {
                        // Complete what was started
                        unsafe {
                            randomx_calculate_hash_last(self.vm, output_ptr);
                        }
                    }
                    return Err(RandomXError::ParameterError("input was empty".to_string()));
                };
                let size_input = input[i].len() as usize;
                let input_ptr = input[i].as_ptr() as *mut c_void;
                output_ptr = arr.as_ptr() as *mut c_void;
                if i == 0 {
                    // For first iteration
                    unsafe {
                        randomx_calculate_hash_first(self.vm, input_ptr, size_input);
                    }
                } else {
                    unsafe {
                        // For every other iteration
                        randomx_calculate_hash_next(self.vm, input_ptr, size_input, output_ptr);
                    }
                }
            } else {
                // For last iteration
                unsafe {
                    randomx_calculate_hash_last(self.vm, output_ptr);
                }
            }

            if i != 0 {
                // First hash is only available in 2nd iteration
                if arr == [0; RANDOMX_HASH_SIZE as usize] {
                    return Err(RandomXError::Other("RandomX hash was zero".to_string()));
                }
                let output: Vec<u8> = arr.to_vec();
                result.push(output);
            }
        }
        Ok(result)
    }
}

#[cfg(test)]
mod tests {
    use crate::{RandomXCache, RandomXDataset, RandomXFlag, RandomXVM};

    #[test]
    fn lib_alloc_cache() {
        let flags = RandomXFlag::default();
        let key = "Key";
        let cache = RandomXCache::new(flags, key.as_bytes());
        if let Err(i) = cache {
            panic!(format!("Failed to allocate cache, {}", i));
        }
        drop(cache);
    }

    #[test]
    fn lib_alloc_dataset() {
        let flags = RandomXFlag::default();
        let key = "Key";
        let cache = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let dataset = RandomXDataset::new(flags, &cache, 0);
        if let Err(i) = dataset {
            panic!(format!("Failed to allocate dataset, {}", i));
        }
        drop(dataset);
        drop(cache);
    }

    #[test]
    fn lib_alloc_vm() {
        let flags = RandomXFlag::default();
        let key = "Key";
        let cache = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let mut vm = RandomXVM::new(flags, Some(&cache), None);
        if let Err(i) = vm {
            panic!(format!("Failed to allocate vm, {}", i));
        }
        drop(vm);
        let dataset = RandomXDataset::new(flags, &cache, 0).unwrap();
        vm = RandomXVM::new(flags, Some(&cache), Some(&dataset));
        if let Err(i) = vm {
            panic!(format!("Failed to allocate vm, {}", i));
        }
        drop(dataset);
        drop(cache);
        drop(vm);
    }

    #[test]
    fn lib_dataset_memory() {
        let flags = RandomXFlag::default();
        let key = "Key";
        let cache = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let dataset = RandomXDataset::new(flags, &cache, 0).unwrap();
        let memory = dataset.get_data().unwrap_or(std::vec::Vec::new());
        if memory.len() == 0 {
            panic!("Failed to get dataset memory");
        }
        let vec = vec![0u8; memory.len() as usize];
        assert_ne!(memory, vec);
        drop(dataset);
        drop(cache);
    }

    #[test]
    fn lib_calculate_hash() {
        let flags = RandomXFlag::get_recommended_flags();
        let flags2 = flags | RandomXFlag::FLAG_FULL_MEM;
        let key = "Key";
        let input = "Input";
        let cache1 = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let vm1 = RandomXVM::new(flags, Some(&cache1), None).unwrap();
        let hash1 = vm1.calculate_hash(input.as_bytes()).expect("no data");
        let vec = vec![0u8; hash1.len() as usize];
        assert_ne!(hash1, vec);
        let reinit_cache = vm1.reinit_cache(&cache1);
        assert_eq!(reinit_cache.is_ok(), true);
        let hash2 = vm1.calculate_hash(input.as_bytes()).expect("no data");
        assert_ne!(hash2, vec);
        assert_eq!(hash1, hash2);

        let cache2 = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let vm2 = RandomXVM::new(flags, Some(&cache2), None).unwrap();
        let hash3 = vm2.calculate_hash(input.as_bytes()).expect("no data");
        assert_eq!(hash2, hash3);

        let cache3 = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let dataset3 = RandomXDataset::new(flags, &cache3, 0).unwrap();
        let vm3 = RandomXVM::new(flags2, None, Some(&dataset3)).unwrap();
        let hash4 = vm3.calculate_hash(input.as_bytes()).expect("no data");
        assert_ne!(hash3, vec);
        let reinit_dataset = vm3.reinit_dataset(&dataset3);
        assert_eq!(reinit_dataset.is_ok(), true);
        let hash5 = vm3.calculate_hash(input.as_bytes()).expect("no data");
        assert_ne!(hash4, vec);
        assert_eq!(hash4, hash5);

        let cache4 = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let dataset4 = RandomXDataset::new(flags, &cache4, 0).unwrap();
        let vm4 = RandomXVM::new(flags2, Some(&cache4), Some(&dataset4)).unwrap();
        let hash6 = vm3.calculate_hash(input.as_bytes()).expect("no data");
        assert_eq!(hash5, hash6);

        drop(dataset3);
        drop(dataset4);
        drop(cache1);
        drop(cache2);
        drop(cache3);
        drop(vm1);
        drop(vm2);
        drop(vm3);
        drop(vm4);
    }

    #[test]
    fn lib_calculate_hash_set() {
        let flags = RandomXFlag::default();
        let key = "Key";
        let mut inputs = Vec::new();
        inputs.push("Input".as_bytes());
        inputs.push("Input 2".as_bytes());
        inputs.push("Inputs 3".as_bytes());
        let cache = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let vm = RandomXVM::new(flags, Some(&cache), None).unwrap();
        let hashes = vm.calculate_hash_set(inputs.as_slice()).expect("no data");
        assert_eq!(inputs.len(), hashes.len());
        let mut prev_hash = Vec::new();
        let mut i = 0;
        for hash in hashes {
            let vec = vec![0u8; hash.len() as usize];
            assert_ne!(hash, vec);
            assert_ne!(hash, prev_hash);
            let compare = vm.calculate_hash(inputs[i]).unwrap(); //sanity check
            assert_eq!(hash, compare);
            prev_hash = hash;
            i += 1;
        }
        drop(cache);
        drop(vm);
    }

    #[test]
    fn lib_calculate_hash_is_consistent() {
        let flags = RandomXFlag::get_recommended_flags();
        let key = "Key";
        let input = "Input";
        let cache = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let dataset = RandomXDataset::new(flags, &cache, 0).unwrap();
        let vm = RandomXVM::new(flags, Some(&cache), Some(&dataset)).unwrap();
        let hash = vm.calculate_hash(input.as_bytes()).expect("no data");
        assert_eq!(
            hash,
            [
                114, 81, 192, 5, 165, 242, 107, 100, 184, 77, 37, 129, 52, 203, 217, 227, 65, 83,
                215, 213, 59, 71, 32, 172, 253, 155, 204, 111, 183, 213, 157, 155
            ]
        );
        drop(vm);
        drop(dataset);
        drop(cache);

        let cache1 = RandomXCache::new(flags, key.as_bytes()).unwrap();
        let dataset1 = RandomXDataset::new(flags, &cache1, 0).unwrap();
        let vm1 = RandomXVM::new(flags, Some(&cache1), Some(&dataset1)).unwrap();
        let hash1 = vm1.calculate_hash(input.as_bytes()).expect("no data");
        assert_eq!(
            hash1,
            [
                114, 81, 192, 5, 165, 242, 107, 100, 184, 77, 37, 129, 52, 203, 217, 227, 65, 83,
                215, 213, 59, 71, 32, 172, 253, 155, 204, 111, 183, 213, 157, 155
            ]
        );
        drop(vm1);
        drop(dataset1);
        drop(cache1);
    }
}