1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Copyright 2018 Developers of the Rand project.
// Copyright 2017 Paul Dicker.
// Copyright 2014-2017 Melissa O'Neill and PCG Project contributors
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! PCG random number generators

// This is the default multiplier used by PCG for 64-bit state.
const MULTIPLIER: u128 = 2549297995355413924u128 << 64 | 4865540595714422341;

use core::fmt;
use core::mem::transmute;
use rand_core::{RngCore, SeedableRng, Error, le};

/// A PCG random number generator (XSL 128/64 (MCG) variant).
/// 
/// Permuted Congruential Generator with 128-bit state, internal Multiplicative
/// Congruential Generator, and 64-bit output via "xorshift low (bits),
/// random rotation" output function.
/// 
/// This is a 128-bit MCG with the PCG-XSL-RR output function.
/// Note that compared to the standard `pcg64` (128-bit LCG with PCG-XSL-RR
/// output function), this RNG is faster, also has a long cycle, and still has
/// good performance on statistical tests.
/// 
/// Note: this RNG is only available using Rust 1.26 or later.
#[derive(Clone)]
#[cfg_attr(feature="serde1", derive(Serialize,Deserialize))]
pub struct Mcg128Xsl64 {
    state: u128,
}

/// A friendly name for `Mcg128Xsl64`.
pub type Pcg64Mcg = Mcg128Xsl64;

impl Mcg128Xsl64 {
    /// Construct an instance compatible with PCG seed.
    /// 
    /// Note that PCG specifies a default value for the parameter:
    /// 
    /// - `state = 0xcafef00dd15ea5e5`
    pub fn new(state: u128) -> Self {
        // Force low bit to 1, as in C version (C++ uses `state | 3` instead).
        Mcg128Xsl64 { state: state | 1 }
    }
}

// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for Mcg128Xsl64 {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "Mcg128Xsl64 {{}}")
    }
}

/// We use a single 126-bit seed to initialise the state and select a stream.
/// Two `seed` bits (lowest order of last byte) are ignored.
impl SeedableRng for Mcg128Xsl64 {
    type Seed = [u8; 16];

    fn from_seed(seed: Self::Seed) -> Self {
        // Read as if a little-endian u128 value:
        let mut seed_u64 = [0u64; 2];
        le::read_u64_into(&seed, &mut seed_u64);
        let state = (seed_u64[0] as u128) |
                    (seed_u64[1] as u128) << 64;
        Mcg128Xsl64::new(state)
    }
}

impl RngCore for Mcg128Xsl64 {
    #[inline]
    fn next_u32(&mut self) -> u32 {
        self.next_u64() as u32
    }

    #[inline]
    fn next_u64(&mut self) -> u64 {
        // prepare the LCG for the next round
        let state = self.state.wrapping_mul(MULTIPLIER);
        self.state = state;

        // Output function XSL RR ("xorshift low (bits), random rotation")
        // Constants are for 128-bit state, 64-bit output
        const XSHIFT: u32 = 64;     // (128 - 64 + 64) / 2
        const ROTATE: u32 = 122;    // 128 - 6

        let rot = (state >> ROTATE) as u32;
        let xsl = ((state >> XSHIFT) as u64) ^ (state as u64);
        xsl.rotate_right(rot)
    }

    #[inline]
    fn fill_bytes(&mut self, dest: &mut [u8]) {
        // specialisation of impls::fill_bytes_via_next; approx 3x faster
        let mut left = dest;
        while left.len() >= 8 {
            let (l, r) = {left}.split_at_mut(8);
            left = r;
            let chunk: [u8; 8] = unsafe {
                transmute(self.next_u64().to_le())
            };
            l.copy_from_slice(&chunk);
        }
        let n = left.len();
        if n > 0 {
            let chunk: [u8; 8] = unsafe {
                transmute(self.next_u64().to_le())
            };
            left.copy_from_slice(&chunk[..n]);
        }
    }

    #[inline]
    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        Ok(self.fill_bytes(dest))
    }
}

#[cfg(test)]
mod tests {
    use ::rand_core::{RngCore, SeedableRng};
    use super::*;

    #[test]
    fn test_mcg128xsl64_construction() {
        // Test that various construction techniques produce a working RNG.
        let seed = [1,2,3,4, 5,6,7,8, 9,10,11,12, 13,14,15,16];
        let mut rng1 = Mcg128Xsl64::from_seed(seed);
        assert_eq!(rng1.next_u64(), 7071994460355047496);

        let mut rng2 = Mcg128Xsl64::from_rng(&mut rng1).unwrap();
        assert_eq!(rng2.next_u64(), 12300796107712034932);

        let mut rng3 = Mcg128Xsl64::seed_from_u64(0);
        assert_eq!(rng3.next_u64(), 6198063878555692194);

        // This is the same as Mcg128Xsl64, so we only have a single test:
        let mut rng4 = Pcg64Mcg::seed_from_u64(0);
        assert_eq!(rng4.next_u64(), 6198063878555692194);
    }

    #[test]
    fn test_mcg128xsl64_true_values() {
        // Numbers copied from official test suite (C version).
        let mut rng = Mcg128Xsl64::new(42);

        let mut results = [0u64; 6];
        for i in results.iter_mut() { *i = rng.next_u64(); }
        let expected: [u64; 6] = [0x63b4a3a813ce700a, 0x382954200617ab24,
            0xa7fd85ae3fe950ce, 0xd715286aa2887737, 0x60c92fee2e59f32c, 0x84c4e96beff30017];
        assert_eq!(results, expected);
    }

    #[cfg(feature="serde1")]
    #[test]
    fn test_mcg128xsl64_serde() {
        use bincode;
        use std::io::{BufWriter, BufReader};

        let mut rng = Mcg128Xsl64::seed_from_u64(0);

        let buf: Vec<u8> = Vec::new();
        let mut buf = BufWriter::new(buf);
        bincode::serialize_into(&mut buf, &rng).expect("Could not serialize");

        let buf = buf.into_inner().unwrap();
        let mut read = BufReader::new(&buf[..]);
        let mut deserialized: Mcg128Xsl64 = bincode::deserialize_from(&mut read).expect("Could not deserialize");

        assert_eq!(rng.state, deserialized.state);

        for _ in 0..16 {
            assert_eq!(rng.next_u64(), deserialized.next_u64());
        }
    }
}