1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// src/mt64/rand.rs
//
// Copyright (c) 2015,2017 rust-mersenne-twister developers
// Copyright (c) 2020 Ryan Lopopolo <rjl@hyperbo.la>
//
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE> or <http://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT> or <http://opensource.org/licenses/MIT>, at your
// option. All files in the project carrying such notice may not be copied,
// modified, or distributed except according to those terms.

use rand_core::{Error, RngCore, SeedableRng};

use super::Mt19937GenRand64;

impl SeedableRng for Mt19937GenRand64 {
    type Seed = [u8; 8];

    /// Reseed from a little endian encoded `u64`.
    ///
    /// # Examples
    ///
    /// ```
    /// # use rand_core::{RngCore, SeedableRng};
    /// # use rand_mt::Mt19937GenRand64;
    /// // Default MT seed
    /// let seed = 5489_u64.to_le_bytes();
    /// let mut mt = Mt19937GenRand64::from_seed(seed);
    /// assert_ne!(mt.next_u64(), mt.next_u64());
    /// ```
    #[inline]
    fn from_seed(seed: Self::Seed) -> Self {
        Self::from(seed)
    }
}

impl RngCore for Mt19937GenRand64 {
    /// Generate next `u64` output.
    ///
    /// `u64` is the native output of the generator. This function advances the
    /// RNG step counter by one.
    ///
    /// # Examples
    ///
    /// ```
    /// use rand_core::RngCore;
    /// use rand_mt::Mt19937GenRand64;
    ///
    /// let mut rng = Mt19937GenRand64::new_unseeded();
    /// # fn example<T: RngCore>(mut rng: T) {
    /// assert_ne!(rng.next_u64(), rng.next_u64());
    /// # }
    /// # example(rng);
    /// ```
    #[inline]
    fn next_u64(&mut self) -> u64 {
        Self::next_u64(self)
    }

    /// Generate next `u32` output.
    ///
    /// This function is implemented by generating one `u64` from the RNG and
    /// performing shifting and masking to turn it into a `u32` output.
    ///
    /// # Examples
    ///
    /// ```
    /// use rand_core::RngCore;
    /// use rand_mt::Mt19937GenRand64;
    ///
    /// let mut rng = Mt19937GenRand64::new_unseeded();
    /// # fn example<T: RngCore>(mut rng: T) {
    /// assert_ne!(rng.next_u32(), rng.next_u32());
    /// # }
    /// # example(rng);
    /// ```
    #[inline]
    fn next_u32(&mut self) -> u32 {
        Self::next_u32(self)
    }

    /// Fill a buffer with bytes generated from the RNG.
    ///
    /// This method generates random `u64`s (the native output unit of the RNG)
    /// until `dest` is filled.
    ///
    /// This method may discard some output bits if `dest.len()` is not a
    /// multiple of 8.
    ///
    /// # Examples
    ///
    /// ```
    /// use rand_core::RngCore;
    /// use rand_mt::Mt19937GenRand64;
    ///
    /// let mut rng = Mt19937GenRand64::new_unseeded();
    /// # fn example<T: RngCore>(mut rng: T) {
    /// let mut buf = [0; 32];
    /// rng.fill_bytes(&mut buf);
    /// assert_ne!([0; 32], buf);
    /// let mut buf = [0; 31];
    /// rng.fill_bytes(&mut buf);
    /// assert_ne!([0; 31], buf);
    /// # }
    /// # example(rng);
    /// ```
    #[inline]
    fn fill_bytes(&mut self, dest: &mut [u8]) {
        Self::fill_bytes(self, dest);
    }

    /// Fill a buffer with bytes generated from the RNG.
    ///
    /// This method generates random `u64`s (the native output unit of the RNG)
    /// until `dest` is filled.
    ///
    /// This method may discard some output bits if `dest.len()` is not a
    /// multiple of 8.
    ///
    /// `try_fill_bytes` is implemented with [`fill_bytes`](RngCore::fill_bytes)
    /// and is infallible.
    ///
    /// # Examples
    ///
    /// ```
    /// use rand_core::RngCore;
    /// use rand_mt::Mt19937GenRand64;
    ///
    /// let mut rng = Mt19937GenRand64::new_unseeded();
    /// # fn example<T: RngCore>(mut rng: T) -> Result<(), rand_core::Error> {
    /// let mut buf = [0; 32];
    /// rng.try_fill_bytes(&mut buf)?;
    /// assert_ne!([0; 32], buf);
    /// let mut buf = [0; 31];
    /// rng.try_fill_bytes(&mut buf)?;
    /// assert_ne!([0; 31], buf);
    /// # Ok(())
    /// # }
    /// # example(rng).unwrap()
    /// ```
    #[inline]
    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        Self::fill_bytes(self, dest);
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use core::num::Wrapping;
    use rand_core::{RngCore, SeedableRng};

    use super::Mt19937GenRand64;
    use crate::vectors::mt64::{STATE_SEEDED_BY_U64, TEST_OUTPUT};

    #[test]
    fn seeded_state_from_u64_seed() {
        let mt = Mt19937GenRand64::new(0x0123_4567_89ab_cdef_u64);
        let mt_from_seed = Mt19937GenRand64::from_seed(0x0123_4567_89ab_cdef_u64.to_le_bytes());
        assert_eq!(mt.state, mt_from_seed.state);
        for (&Wrapping(x), &y) in mt.state.iter().zip(STATE_SEEDED_BY_U64.iter()) {
            assert_eq!(x, y);
        }
        for (&Wrapping(x), &y) in mt_from_seed.state.iter().zip(STATE_SEEDED_BY_U64.iter()) {
            assert_eq!(x, y);
        }
    }

    #[test]
    fn output_from_u64_slice_key() {
        let key = [0x12345_u64, 0x23456_u64, 0x34567_u64, 0x45678_u64];
        let mut mt = Mt19937GenRand64::new_with_key(key.iter().copied());
        for &x in TEST_OUTPUT.iter() {
            assert_eq!(x, RngCore::next_u64(&mut mt));
        }
    }
}