1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A wrapper around another PRNG that reseeds it after it
//! generates a certain number of random bytes.

use core::mem::size_of;

use rand_core::{RngCore, CryptoRng, SeedableRng, Error};
use rand_core::block::{BlockRngCore, BlockRng};

/// A wrapper around any PRNG that implements [`BlockRngCore`], that adds the
/// ability to reseed it.
///
/// `ReseedingRng` reseeds the underlying PRNG in the following cases:
///
/// - On a manual call to [`reseed()`].
/// - After `clone()`, the clone will be reseeded on first use.
/// - After a process is forked, the RNG in the child process is reseeded within
///   the next few generated values, depending on the block size of the
///   underlying PRNG. For ChaCha and Hc128 this is a maximum of
///   15 `u32` values before reseeding.
/// - After the PRNG has generated a configurable number of random bytes.
///
/// # When should reseeding after a fixed number of generated bytes be used?
///
/// Reseeding after a fixed number of generated bytes is never strictly
/// *necessary*. Cryptographic PRNGs don't have a limited number of bytes they
/// can output, or at least not a limit reachable in any practical way. There is
/// no such thing as 'running out of entropy'.
///
/// Occasionally reseeding can be seen as some form of 'security in depth'. Even
/// if in the future a cryptographic weakness is found in the CSPRNG being used,
/// or a flaw in the implementation, occasionally reseeding should make
/// exploiting it much more difficult or even impossible.
///
/// Use [`ReseedingRng::new`] with a `threshold` of `0` to disable reseeding
/// after a fixed number of generated bytes.
///
/// # Error handling
///
/// Although unlikely, reseeding the wrapped PRNG can fail. `ReseedingRng` will
/// never panic but try to handle the error intelligently through some
/// combination of retrying and delaying reseeding until later.
/// If handling the source error fails `ReseedingRng` will continue generating
/// data from the wrapped PRNG without reseeding.
///
/// Manually calling [`reseed()`] will not have this retry or delay logic, but
/// reports the error.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand_chacha::ChaCha20Core; // Internal part of ChaChaRng that
///                              // implements BlockRngCore
/// use rand::rngs::OsRng;
/// use rand::rngs::adapter::ReseedingRng;
///
/// let prng = ChaCha20Core::from_entropy();
/// let mut reseeding_rng = ReseedingRng::new(prng, 0, OsRng);
///
/// println!("{}", reseeding_rng.gen::<u64>());
///
/// let mut cloned_rng = reseeding_rng.clone();
/// assert!(reseeding_rng.gen::<u64>() != cloned_rng.gen::<u64>());
/// ```
///
/// [`BlockRngCore`]: rand_core::block::BlockRngCore
/// [`ReseedingRng::new`]: ReseedingRng::new
/// [`reseed()`]: ReseedingRng::reseed
#[derive(Debug)]
pub struct ReseedingRng<R, Rsdr>(BlockRng<ReseedingCore<R, Rsdr>>)
where R: BlockRngCore + SeedableRng,
      Rsdr: RngCore;

impl<R, Rsdr> ReseedingRng<R, Rsdr>
where R: BlockRngCore + SeedableRng,
      Rsdr: RngCore
{
    /// Create a new `ReseedingRng` from an existing PRNG, combined with a RNG
    /// to use as reseeder.
    ///
    /// `threshold` sets the number of generated bytes after which to reseed the
    /// PRNG. Set it to zero to never reseed based on the number of generated
    /// values.
    pub fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self {
        ReseedingRng(BlockRng::new(ReseedingCore::new(rng, threshold, reseeder)))
    }

    /// Reseed the internal PRNG.
    pub fn reseed(&mut self) -> Result<(), Error> {
        self.0.core.reseed()
    }
}

// TODO: this should be implemented for any type where the inner type
// implements RngCore, but we can't specify that because ReseedingCore is private
impl<R, Rsdr: RngCore> RngCore for ReseedingRng<R, Rsdr>
where R: BlockRngCore<Item = u32> + SeedableRng,
    <R as BlockRngCore>::Results: AsRef<[u32]> + AsMut<[u32]>
{
    #[inline(always)]
    fn next_u32(&mut self) -> u32 {
        self.0.next_u32()
    }

    #[inline(always)]
    fn next_u64(&mut self) -> u64 {
        self.0.next_u64()
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        self.0.fill_bytes(dest)
    }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        self.0.try_fill_bytes(dest)
    }
}

impl<R, Rsdr> Clone for ReseedingRng<R, Rsdr>
where R: BlockRngCore + SeedableRng + Clone,
      Rsdr: RngCore + Clone
{
    fn clone(&self) -> ReseedingRng<R, Rsdr> {
        // Recreating `BlockRng` seems easier than cloning it and resetting
        // the index.
        ReseedingRng(BlockRng::new(self.0.core.clone()))
    }
}

impl<R, Rsdr> CryptoRng for ReseedingRng<R, Rsdr>
where R: BlockRngCore + SeedableRng + CryptoRng,
      Rsdr: RngCore + CryptoRng {}

#[derive(Debug)]
struct ReseedingCore<R, Rsdr> {
    inner: R,
    reseeder: Rsdr,
    threshold: i64,
    bytes_until_reseed: i64,
    fork_counter: usize,
}

impl<R, Rsdr> BlockRngCore for ReseedingCore<R, Rsdr>
where R: BlockRngCore + SeedableRng,
      Rsdr: RngCore
{
    type Item = <R as BlockRngCore>::Item;
    type Results = <R as BlockRngCore>::Results;

    fn generate(&mut self, results: &mut Self::Results) {
        let global_fork_counter = fork::get_fork_counter();
        if self.bytes_until_reseed <= 0 ||
           self.is_forked(global_fork_counter) {
            // We get better performance by not calling only `reseed` here
            // and continuing with the rest of the function, but by directly
            // returning from a non-inlined function.
            return self.reseed_and_generate(results, global_fork_counter);
        }
        let num_bytes = results.as_ref().len() * size_of::<Self::Item>();
        self.bytes_until_reseed -= num_bytes as i64;
        self.inner.generate(results);
    }
}

impl<R, Rsdr> ReseedingCore<R, Rsdr>
where R: BlockRngCore + SeedableRng,
      Rsdr: RngCore
{
    /// Create a new `ReseedingCore`.
    fn new(rng: R, threshold: u64, reseeder: Rsdr) -> Self {
        use ::core::i64::MAX;
        fork::register_fork_handler();

        // Because generating more values than `i64::MAX` takes centuries on
        // current hardware, we just clamp to that value.
        // Also we set a threshold of 0, which indicates no limit, to that
        // value.
        let threshold =
            if threshold == 0 { MAX }
            else if threshold <= MAX as u64 { threshold as i64 }
            else { MAX };

        ReseedingCore {
            inner: rng,
            reseeder,
            threshold: threshold as i64,
            bytes_until_reseed: threshold as i64,
            fork_counter: 0,
        }
    }

    /// Reseed the internal PRNG.
    fn reseed(&mut self) -> Result<(), Error> {
        R::from_rng(&mut self.reseeder).map(|result| {
            self.bytes_until_reseed = self.threshold;
            self.inner = result
        })
    }

    fn is_forked(&self, global_fork_counter: usize) -> bool {
        // In theory, on 32-bit platforms, it is possible for
        // `global_fork_counter` to wrap around after ~4e9 forks.
        //
        // This check will detect a fork in the normal case where
        // `fork_counter < global_fork_counter`, and also when the difference
        // between both is greater than `isize::MAX` (wrapped around).
        //
        // It will still fail to detect a fork if there have been more than
        // `isize::MAX` forks, without any reseed in between. Seems unlikely
        // enough.
        (self.fork_counter.wrapping_sub(global_fork_counter) as isize) < 0
    }

    #[inline(never)]
    fn reseed_and_generate(&mut self,
                           results: &mut <Self as BlockRngCore>::Results,
                           global_fork_counter: usize)
    {
        #![allow(clippy::if_same_then_else)]  // false positive
        if self.is_forked(global_fork_counter) {
            info!("Fork detected, reseeding RNG");
        } else {
            trace!("Reseeding RNG (periodic reseed)");
        }

        let num_bytes =
            results.as_ref().len() * size_of::<<R as BlockRngCore>::Item>();

        if let Err(e) = self.reseed() {
            warn!("Reseeding RNG failed: {}", e);
            let _ = e;
        }
        self.fork_counter = global_fork_counter;

        self.bytes_until_reseed = self.threshold - num_bytes as i64;
        self.inner.generate(results);
    }
}

impl<R, Rsdr> Clone for ReseedingCore<R, Rsdr>
where R: BlockRngCore + SeedableRng + Clone,
      Rsdr: RngCore + Clone
{
    fn clone(&self) -> ReseedingCore<R, Rsdr> {
        ReseedingCore {
            inner: self.inner.clone(),
            reseeder: self.reseeder.clone(),
            threshold: self.threshold,
            bytes_until_reseed: 0, // reseed clone on first use
            fork_counter: self.fork_counter,
        }
    }
}

impl<R, Rsdr> CryptoRng for ReseedingCore<R, Rsdr>
where R: BlockRngCore + SeedableRng + CryptoRng,
      Rsdr: RngCore + CryptoRng {}


#[cfg(all(unix, not(target_os="emscripten")))]
mod fork {
    use core::sync::atomic::{AtomicUsize, AtomicBool, Ordering};
    #[allow(deprecated)]  // Required for compatibility with Rust < 1.24.
    use core::sync::atomic::{ATOMIC_USIZE_INIT, ATOMIC_BOOL_INIT};

    // Fork protection
    //
    // We implement fork protection on Unix using `pthread_atfork`.
    // When the process is forked, we increment `RESEEDING_RNG_FORK_COUNTER`.
    // Every `ReseedingRng` stores the last known value of the static in
    // `fork_counter`. If the cached `fork_counter` is less than
    // `RESEEDING_RNG_FORK_COUNTER`, it is time to reseed this RNG.
    //
    // If reseeding fails, we don't deal with this by setting a delay, but just
    // don't update `fork_counter`, so a reseed is attempted as soon as
    // possible.

    #[allow(deprecated)]
    static RESEEDING_RNG_FORK_COUNTER: AtomicUsize = ATOMIC_USIZE_INIT;

    pub fn get_fork_counter() -> usize {
        RESEEDING_RNG_FORK_COUNTER.load(Ordering::Relaxed)
    }

    #[allow(deprecated)]
    static FORK_HANDLER_REGISTERED: AtomicBool = ATOMIC_BOOL_INIT;

    extern fn fork_handler() {
        // Note: fetch_add is defined to wrap on overflow
        // (which is what we want).
        RESEEDING_RNG_FORK_COUNTER.fetch_add(1, Ordering::Relaxed);
    }

    pub fn register_fork_handler() {
        if !FORK_HANDLER_REGISTERED.load(Ordering::Relaxed) {
            unsafe { libc::pthread_atfork(None, None, Some(fork_handler)) };
            FORK_HANDLER_REGISTERED.store(true, Ordering::Relaxed);
        }
    }
}

#[cfg(not(all(unix, not(target_os="emscripten"))))]
mod fork {
    pub fn get_fork_counter() -> usize { 0 }
    pub fn register_fork_handler() {}
}


#[cfg(test)]
mod test {
    use crate::{Rng, SeedableRng};
    use crate::rngs::std::Core;
    use crate::rngs::mock::StepRng;
    use super::ReseedingRng;

    #[test]
    fn test_reseeding() {
        let mut zero = StepRng::new(0, 0);
        let rng = Core::from_rng(&mut zero).unwrap();
        let thresh = 1; // reseed every time the buffer is exhausted
        let mut reseeding = ReseedingRng::new(rng, thresh, zero);

        // RNG buffer size is [u32; 64]
        // Debug is only implemented up to length 32 so use two arrays
        let mut buf = ([0u32; 32], [0u32; 32]);
        reseeding.fill(&mut buf.0);
        reseeding.fill(&mut buf.1);
        let seq = buf;
        for _ in 0..10 {
            reseeding.fill(&mut buf.0);
            reseeding.fill(&mut buf.1);
            assert_eq!(buf, seq);
        }
    }

    #[test]
    fn test_clone_reseeding() {
        let mut zero = StepRng::new(0, 0);
        let rng = Core::from_rng(&mut zero).unwrap();
        let mut rng1 = ReseedingRng::new(rng, 32*4, zero);

        let first: u32 = rng1.gen();
        for _ in 0..10 { let _ = rng1.gen::<u32>(); }

        let mut rng2 = rng1.clone();
        assert_eq!(first, rng2.gen::<u32>());
    }
}