1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // https://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for random number generation //! //! Rand provides utilities to generate random numbers, to convert them to //! useful types and distributions, and some randomness-related algorithms. //! //! # Basic usage //! //! To get you started quickly, the easiest and highest-level way to get //! a random value is to use [`random()`]. //! //! ``` //! let x: u8 = rand::random(); //! println!("{}", x); //! //! let y = rand::random::<f64>(); //! println!("{}", y); //! //! if rand::random() { // generates a boolean //! println!("Heads!"); //! } //! ``` //! //! This supports generating most common types but is not very flexible, thus //! you probably want to learn a bit more about the Rand library. //! //! //! # The two-step process to get a random value //! //! Generating random values is typically a two-step process: //! //! - get some *random data* (an integer or bit/byte sequence) from a random //! number generator (RNG); //! - use some function to transform that *data* into the type of value you want //! (this function is an implementation of some *distribution* describing the //! kind of value produced). //! //! Rand represents the first step with the [`RngCore`] trait and the second //! step via a combination of the [`Rng`] extension trait and the //! [`distributions` module]. //! In practice you probably won't use [`RngCore`] directly unless you are //! implementing a random number generator (RNG). //! //! There are many kinds of RNGs, with different trade-offs. You can read more //! about them in the [`rngs` module] and even more in the [`prng` module], //! however, often you can just use [`thread_rng()`]. This function //! automatically initializes an RNG in thread-local memory, then returns a //! reference to it. It is fast, good quality, and secure (unpredictable). //! //! To turn the output of the RNG into something usable, you usually want to use //! the methods from the [`Rng`] trait. Some of the most useful methods are: //! //! - [`gen`] generates a random value appropriate for the type (just like //! [`random()`]). For integers this is normally the full representable range //! (e.g. from `0u32` to `std::u32::MAX`), for floats this is between 0 and 1, //! and some other types are supported, including arrays and tuples. See the //! [`Standard`] distribution which provides the implementations. //! - [`gen_range`] samples from a specific range of values; this is like //! [`gen`] but with specific upper and lower bounds. //! - [`sample`] samples directly from some distribution. //! //! [`random()`] is defined using just the above: `thread_rng().gen()`. //! //! ## Distributions //! //! What are distributions, you ask? Specifying only the type and range of //! values (known as the *sample space*) is not enough; samples must also have //! a *probability distribution*, describing the relative probability of //! sampling each value in that space. //! //! In many cases a *uniform* distribution is used, meaning roughly that each //! value is equally likely (or for "continuous" types like floats, that each //! equal-sized sub-range has the same probability of containing a sample). //! [`gen`] and [`gen_range`] both use statistically uniform distributions. //! //! The [`distributions` module] provides implementations //! of some other distributions, including Normal, Log-Normal and Exponential. //! //! It is worth noting that the functionality already mentioned is implemented //! with distributions: [`gen`] samples values using the [`Standard`] //! distribution, while [`gen_range`] uses [`Uniform`]. //! //! ## Importing (prelude) //! //! The most convenient way to import items from Rand is to use the [prelude]. //! This includes the most important parts of Rand, but only those unlikely to //! cause name conflicts. //! //! Note that Rand 0.5 has significantly changed the module organization and //! contents relative to previous versions. Where possible old names have been //! kept (but are hidden in the documentation), however these will be removed //! in the future. We therefore recommend migrating to use the prelude or the //! new module organization in your imports. //! //! //! ## Examples //! //! ``` //! use rand::prelude::*; //! //! // thread_rng is often the most convenient source of randomness: //! let mut rng = thread_rng(); //! //! if rng.gen() { // random bool //! let x: f64 = rng.gen(); // random number in range [0, 1) //! println!("x is: {}", x); //! let ch = rng.gen::<char>(); // using type annotation //! println!("char is: {}", ch); //! println!("Number from 0 to 9: {}", rng.gen_range(0, 10)); //! } //! ``` //! //! //! # More functionality //! //! The [`Rng`] trait includes a few more methods not mentioned above: //! //! - [`Rng::sample_iter`] allows iterating over values from a chosen //! distribution. //! - [`Rng::gen_bool`] generates boolean "events" with a given probability. //! - [`Rng::fill`] and [`Rng::try_fill`] are fast alternatives to fill a slice //! of integers. //! - [`Rng::shuffle`] randomly shuffles elements in a slice. //! - [`Rng::choose`] picks one element at random from a slice. //! //! For more slice/sequence related functionality, look in the [`seq` module]. //! //! There is also [`distributions::WeightedChoice`], which can be used to pick //! elements at random with some probability. But it does not work well at the //! moment and is going through a redesign. //! //! //! # Error handling //! //! Error handling in Rand is a compromise between simplicity and necessity. //! Most RNGs and sampling functions will never produce errors, and making these //! able to handle errors would add significant overhead (to code complexity //! and ergonomics of usage at least, and potentially also performance, //! depending on the approach). //! However, external RNGs can fail, and being able to handle this is important. //! //! It has therefore been decided that *most* methods should not return a //! `Result` type, with as exceptions [`Rng::try_fill`], //! [`RngCore::try_fill_bytes`], and [`SeedableRng::from_rng`]. //! //! Note that it is the RNG that panics when it fails but is not used through a //! method that can report errors. Currently Rand contains only three RNGs that //! can return an error (and thus may panic), and documents this property: //! [`OsRng`], [`EntropyRng`] and [`ReadRng`]. Other RNGs, like [`ThreadRng`] //! and [`StdRng`], can be used with all methods without concern. //! //! One further problem is that if Rand is unable to get any external randomness //! when initializing an RNG with [`EntropyRng`], it will panic in //! [`FromEntropy::from_entropy`], and notably in [`thread_rng()`]. Except by //! compromising security, this problem is as unsolvable as running out of //! memory. //! //! //! # Distinction between Rand and `rand_core` //! //! The [`rand_core`] crate provides the necessary traits and functionality for //! implementing RNGs; this includes the [`RngCore`] and [`SeedableRng`] traits //! and the [`Error`] type. //! Crates implementing RNGs should depend on [`rand_core`]. //! //! Applications and libraries consuming random values are encouraged to use the //! Rand crate, which re-exports the common parts of [`rand_core`]. //! //! //! # More examples //! //! For some inspiration, see the examples: //! //! - [Monte Carlo estimation of π]( //! https://github.com/rust-lang-nursery/rand/blob/master/examples/monte-carlo.rs) //! - [Monty Hall Problem]( //! https://github.com/rust-lang-nursery/rand/blob/master/examples/monty-hall.rs) //! //! //! [`distributions` module]: distributions/index.html //! [`distributions::WeightedChoice`]: distributions/struct.WeightedChoice.html //! [`FromEntropy::from_entropy`]: trait.FromEntropy.html#tymethod.from_entropy //! [`EntropyRng`]: rngs/struct.EntropyRng.html //! [`Error`]: struct.Error.html //! [`gen_range`]: trait.Rng.html#method.gen_range //! [`gen`]: trait.Rng.html#method.gen //! [`OsRng`]: rngs/struct.OsRng.html //! [prelude]: prelude/index.html //! [`rand_core`]: https://crates.io/crates/rand_core //! [`random()`]: fn.random.html //! [`ReadRng`]: rngs/adapter/struct.ReadRng.html //! [`Rng::choose`]: trait.Rng.html#method.choose //! [`Rng::fill`]: trait.Rng.html#method.fill //! [`Rng::gen_bool`]: trait.Rng.html#method.gen_bool //! [`Rng::gen`]: trait.Rng.html#method.gen //! [`Rng::sample_iter`]: trait.Rng.html#method.sample_iter //! [`Rng::shuffle`]: trait.Rng.html#method.shuffle //! [`RngCore`]: trait.RngCore.html //! [`RngCore::try_fill_bytes`]: trait.RngCore.html#method.try_fill_bytes //! [`rngs` module]: rngs/index.html //! [`prng` module]: prng/index.html //! [`Rng`]: trait.Rng.html //! [`Rng::try_fill`]: trait.Rng.html#method.try_fill //! [`sample`]: trait.Rng.html#method.sample //! [`SeedableRng`]: trait.SeedableRng.html //! [`SeedableRng::from_rng`]: trait.SeedableRng.html#method.from_rng //! [`seq` module]: seq/index.html //! [`SmallRng`]: rngs/struct.SmallRng.html //! [`StdRng`]: rngs/struct.StdRng.html //! [`thread_rng()`]: fn.thread_rng.html //! [`ThreadRng`]: rngs/struct.ThreadRng.html //! [`Standard`]: distributions/struct.Standard.html //! [`Uniform`]: distributions/struct.Uniform.html #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", html_favicon_url = "https://www.rust-lang.org/favicon.ico", html_root_url = "https://docs.rs/rand/0.5.6")] #![deny(missing_docs)] #![deny(missing_debug_implementations)] #![doc(test(attr(allow(unused_variables), deny(warnings))))] #![cfg_attr(not(feature="std"), no_std)] #![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))] #![cfg_attr(all(feature="i128_support", feature="nightly"), allow(stable_features))] // stable since 2018-03-27 #![cfg_attr(all(feature="i128_support", feature="nightly"), feature(i128_type, i128))] #![cfg_attr(feature = "stdweb", recursion_limit="128")] #[cfg(feature="std")] extern crate std as core; #[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc; #[cfg(test)] #[cfg(feature="serde1")] extern crate bincode; #[cfg(feature="serde1")] extern crate serde; #[cfg(feature="serde1")] #[macro_use] extern crate serde_derive; #[cfg(all(target_arch="wasm32", not(target_os="emscripten"), feature="stdweb"))] #[macro_use] extern crate stdweb; extern crate rand_core; #[cfg(feature = "log")] #[macro_use] extern crate log; #[allow(unused)] #[cfg(not(feature = "log"))] macro_rules! trace { ($($x:tt)*) => () } #[allow(unused)] #[cfg(not(feature = "log"))] macro_rules! debug { ($($x:tt)*) => () } #[allow(unused)] #[cfg(not(feature = "log"))] macro_rules! info { ($($x:tt)*) => () } #[allow(unused)] #[cfg(not(feature = "log"))] macro_rules! warn { ($($x:tt)*) => () } #[allow(unused)] #[cfg(not(feature = "log"))] macro_rules! error { ($($x:tt)*) => () } // Re-exports from rand_core pub use rand_core::{RngCore, CryptoRng, SeedableRng}; pub use rand_core::{ErrorKind, Error}; // Public exports #[cfg(feature="std")] pub use rngs::thread::thread_rng; // Public modules pub mod distributions; pub mod prelude; pub mod prng; pub mod rngs; #[cfg(feature = "alloc")] pub mod seq; //////////////////////////////////////////////////////////////////////////////// // Compatibility re-exports. Documentation is hidden; will be removed eventually. #[cfg(feature="std")] #[doc(hidden)] pub use rngs::adapter::read; #[doc(hidden)] pub use rngs::adapter::ReseedingRng; #[allow(deprecated)] #[cfg(feature="std")] #[doc(hidden)] pub use rngs::EntropyRng; #[allow(deprecated)] #[cfg(all(feature="std", any(target_os = "linux", target_os = "android", target_os = "netbsd", target_os = "dragonfly", target_os = "haiku", target_os = "emscripten", target_os = "solaris", target_os = "cloudabi", target_os = "macos", target_os = "ios", target_os = "freebsd", target_os = "openbsd", target_os = "bitrig", target_os = "redox", target_os = "fuchsia", windows, all(target_arch = "wasm32", feature = "stdweb") )))] #[doc(hidden)] pub use rngs::OsRng; #[doc(hidden)] pub use prng::{ChaChaRng, IsaacRng, Isaac64Rng, XorShiftRng}; #[doc(hidden)] pub use rngs::StdRng; #[allow(deprecated)] #[doc(hidden)] pub mod jitter { pub use rngs::{JitterRng, TimerError}; } #[allow(deprecated)] #[cfg(all(feature="std", any(target_os = "linux", target_os = "android", target_os = "netbsd", target_os = "dragonfly", target_os = "haiku", target_os = "emscripten", target_os = "solaris", target_os = "cloudabi", target_os = "macos", target_os = "ios", target_os = "freebsd", target_os = "openbsd", target_os = "bitrig", target_os = "redox", target_os = "fuchsia", windows, all(target_arch = "wasm32", feature = "stdweb") )))] #[doc(hidden)] pub mod os { pub use rngs::OsRng; } #[allow(deprecated)] #[doc(hidden)] pub mod chacha { //! The ChaCha random number generator. pub use prng::ChaChaRng; } #[doc(hidden)] pub mod isaac { //! The ISAAC random number generator. pub use prng::{IsaacRng, Isaac64Rng}; } #[cfg(feature="std")] #[doc(hidden)] pub use rngs::ThreadRng; //////////////////////////////////////////////////////////////////////////////// use core::{marker, mem, slice}; use distributions::{Distribution, Standard}; use distributions::uniform::{SampleUniform, UniformSampler}; /// A type that can be randomly generated using an [`Rng`]. /// /// This is merely an adapter around the [`Standard`] distribution for /// convenience and backwards-compatibility. /// /// [`Rng`]: trait.Rng.html /// [`Standard`]: distributions/struct.Standard.html #[deprecated(since="0.5.0", note="replaced by distributions::Standard")] pub trait Rand : Sized { /// Generates a random instance of this type using the specified source of /// randomness. fn rand<R: Rng>(rng: &mut R) -> Self; } /// An automatically-implemented extension trait on [`RngCore`] providing high-level /// generic methods for sampling values and other convenience methods. /// /// This is the primary trait to use when generating random values. /// /// # Generic usage /// /// The basic pattern is `fn foo<R: Rng + ?Sized>(rng: &mut R)`. Some /// things are worth noting here: /// /// - Since `Rng: RngCore` and every `RngCore` implements `Rng`, it makes no /// difference whether we use `R: Rng` or `R: RngCore`. /// - The `+ ?Sized` un-bounding allows functions to be called directly on /// type-erased references; i.e. `foo(r)` where `r: &mut RngCore`. Without /// this it would be necessary to write `foo(&mut r)`. /// /// An alternative pattern is possible: `fn foo<R: Rng>(rng: R)`. This has some /// trade-offs. It allows the argument to be consumed directly without a `&mut` /// (which is how `from_rng(thread_rng())` works); also it still works directly /// on references (including type-erased references). Unfortunately within the /// function `foo` it is not known whether `rng` is a reference type or not, /// hence many uses of `rng` require an extra reference, either explicitly /// (`distr.sample(&mut rng)`) or implicitly (`rng.gen()`); one may hope the /// optimiser can remove redundant references later. /// /// Example: /// /// ``` /// # use rand::thread_rng; /// use rand::Rng; /// /// fn foo<R: Rng + ?Sized>(rng: &mut R) -> f32 { /// rng.gen() /// } /// /// # let v = foo(&mut thread_rng()); /// ``` /// /// [`RngCore`]: trait.RngCore.html pub trait Rng: RngCore { /// Return a random value supporting the [`Standard`] distribution. /// /// [`Standard`]: distributions/struct.Standard.html /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// let x: u32 = rng.gen(); /// println!("{}", x); /// println!("{:?}", rng.gen::<(f64, bool)>()); /// ``` #[inline] fn gen<T>(&mut self) -> T where Standard: Distribution<T> { Standard.sample(self) } /// Generate a random value in the range [`low`, `high`), i.e. inclusive of /// `low` and exclusive of `high`. /// /// This function is optimised for the case that only a single sample is /// made from the given range. See also the [`Uniform`] distribution /// type which may be faster if sampling from the same range repeatedly. /// /// # Panics /// /// Panics if `low >= high`. /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// let n: u32 = rng.gen_range(0, 10); /// println!("{}", n); /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64); /// println!("{}", m); /// ``` /// /// [`Uniform`]: distributions/uniform/struct.Uniform.html fn gen_range<T: PartialOrd + SampleUniform>(&mut self, low: T, high: T) -> T { T::Sampler::sample_single(low, high, self) } /// Sample a new value, using the given distribution. /// /// ### Example /// /// ``` /// use rand::{thread_rng, Rng}; /// use rand::distributions::Uniform; /// /// let mut rng = thread_rng(); /// let x = rng.sample(Uniform::new(10u32, 15)); /// // Type annotation requires two types, the type and distribution; the /// // distribution can be inferred. /// let y = rng.sample::<u16, _>(Uniform::new(10, 15)); /// ``` fn sample<T, D: Distribution<T>>(&mut self, distr: D) -> T { distr.sample(self) } /// Create an iterator that generates values using the given distribution. /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// use rand::distributions::{Alphanumeric, Uniform, Standard}; /// /// let mut rng = thread_rng(); /// /// // Vec of 16 x f32: /// let v: Vec<f32> = thread_rng().sample_iter(&Standard).take(16).collect(); /// /// // String: /// let s: String = rng.sample_iter(&Alphanumeric).take(7).collect(); /// /// // Combined values /// println!("{:?}", thread_rng().sample_iter(&Standard).take(5) /// .collect::<Vec<(f64, bool)>>()); /// /// // Dice-rolling: /// let die_range = Uniform::new_inclusive(1, 6); /// let mut roll_die = rng.sample_iter(&die_range); /// while roll_die.next().unwrap() != 6 { /// println!("Not a 6; rolling again!"); /// } /// ``` fn sample_iter<'a, T, D: Distribution<T>>(&'a mut self, distr: &'a D) -> distributions::DistIter<'a, D, Self, T> where Self: Sized { distr.sample_iter(self) } /// Fill `dest` entirely with random bytes (uniform value distribution), /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). /// /// On big-endian platforms this performs byte-swapping to ensure /// portability of results from reproducible generators. /// /// This uses [`fill_bytes`] internally which may handle some RNG errors /// implicitly (e.g. waiting if the OS generator is not ready), but panics /// on other errors. See also [`try_fill`] which returns errors. /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// /// let mut arr = [0i8; 20]; /// thread_rng().fill(&mut arr[..]); /// ``` /// /// [`fill_bytes`]: trait.RngCore.html#method.fill_bytes /// [`try_fill`]: trait.Rng.html#method.try_fill /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html fn fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) { self.fill_bytes(dest.as_byte_slice_mut()); dest.to_le(); } /// Fill `dest` entirely with random bytes (uniform value distribution), /// where `dest` is any type supporting [`AsByteSliceMut`], namely slices /// and arrays over primitive integer types (`i8`, `i16`, `u32`, etc.). /// /// On big-endian platforms this performs byte-swapping to ensure /// portability of results from reproducible generators. /// /// This uses [`try_fill_bytes`] internally and forwards all RNG errors. In /// some cases errors may be resolvable; see [`ErrorKind`] and /// documentation for the RNG in use. If you do not plan to handle these /// errors you may prefer to use [`fill`]. /// /// # Example /// /// ``` /// # use rand::Error; /// use rand::{thread_rng, Rng}; /// /// # fn try_inner() -> Result<(), Error> { /// let mut arr = [0u64; 4]; /// thread_rng().try_fill(&mut arr[..])?; /// # Ok(()) /// # } /// /// # try_inner().unwrap() /// ``` /// /// [`ErrorKind`]: enum.ErrorKind.html /// [`try_fill_bytes`]: trait.RngCore.html#method.try_fill_bytes /// [`fill`]: trait.Rng.html#method.fill /// [`AsByteSliceMut`]: trait.AsByteSliceMut.html fn try_fill<T: AsByteSliceMut + ?Sized>(&mut self, dest: &mut T) -> Result<(), Error> { self.try_fill_bytes(dest.as_byte_slice_mut())?; dest.to_le(); Ok(()) } /// Return a bool with a probability `p` of being true. /// /// This is a wrapper around [`distributions::Bernoulli`]. /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// println!("{}", rng.gen_bool(1.0 / 3.0)); /// ``` /// /// # Panics /// /// If `p` < 0 or `p` > 1. /// /// [`distributions::Bernoulli`]: distributions/bernoulli/struct.Bernoulli.html #[inline] fn gen_bool(&mut self, p: f64) -> bool { let d = distributions::Bernoulli::new(p); self.sample(d) } /// Return a random element from `values`. /// /// Return `None` if `values` is empty. /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// /// let choices = [1, 2, 4, 8, 16, 32]; /// let mut rng = thread_rng(); /// println!("{:?}", rng.choose(&choices)); /// assert_eq!(rng.choose(&choices[..0]), None); /// ``` fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> { if values.is_empty() { None } else { Some(&values[self.gen_range(0, values.len())]) } } /// Return a mutable pointer to a random element from `values`. /// /// Return `None` if `values` is empty. fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> { if values.is_empty() { None } else { let len = values.len(); Some(&mut values[self.gen_range(0, len)]) } } /// Shuffle a mutable slice in place. /// /// This applies Durstenfeld's algorithm for the [Fisher–Yates shuffle]( /// https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) /// which produces an unbiased permutation. /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// let mut y = [1, 2, 3]; /// rng.shuffle(&mut y); /// println!("{:?}", y); /// rng.shuffle(&mut y); /// println!("{:?}", y); /// ``` fn shuffle<T>(&mut self, values: &mut [T]) { let mut i = values.len(); while i >= 2 { // invariant: elements with index >= i have been locked in place. i -= 1; // lock element i in place. values.swap(i, self.gen_range(0, i + 1)); } } /// Return an iterator that will yield an infinite number of randomly /// generated items. /// /// # Example /// /// ``` /// # #![allow(deprecated)] /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>(); /// println!("{:?}", x); /// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5) /// .collect::<Vec<(f64, bool)>>()); /// ``` #[allow(deprecated)] #[deprecated(since="0.5.0", note="use Rng::sample_iter(&Standard) instead")] fn gen_iter<T>(&mut self) -> Generator<T, &mut Self> where Standard: Distribution<T> { Generator { rng: self, _marker: marker::PhantomData } } /// Return a bool with a 1 in n chance of true /// /// # Example /// /// ``` /// # #![allow(deprecated)] /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// assert_eq!(rng.gen_weighted_bool(0), true); /// assert_eq!(rng.gen_weighted_bool(1), true); /// // Just like `rng.gen::<bool>()` a 50-50% chance, but using a slower /// // method with different results. /// println!("{}", rng.gen_weighted_bool(2)); /// // First meaningful use of `gen_weighted_bool`. /// println!("{}", rng.gen_weighted_bool(3)); /// ``` #[deprecated(since="0.5.0", note="use gen_bool instead")] fn gen_weighted_bool(&mut self, n: u32) -> bool { // Short-circuit after `n <= 1` to avoid panic in `gen_range` n <= 1 || self.gen_range(0, n) == 0 } /// Return an iterator of random characters from the set A-Z,a-z,0-9. /// /// # Example /// /// ``` /// # #![allow(deprecated)] /// use rand::{thread_rng, Rng}; /// /// let s: String = thread_rng().gen_ascii_chars().take(10).collect(); /// println!("{}", s); /// ``` #[allow(deprecated)] #[deprecated(since="0.5.0", note="use sample_iter(&Alphanumeric) instead")] fn gen_ascii_chars(&mut self) -> AsciiGenerator<&mut Self> { AsciiGenerator { rng: self } } } impl<R: RngCore + ?Sized> Rng for R {} /// Trait for casting types to byte slices /// /// This is used by the [`fill`] and [`try_fill`] methods. /// /// [`fill`]: trait.Rng.html#method.fill /// [`try_fill`]: trait.Rng.html#method.try_fill pub trait AsByteSliceMut { /// Return a mutable reference to self as a byte slice fn as_byte_slice_mut(&mut self) -> &mut [u8]; /// Call `to_le` on each element (i.e. byte-swap on Big Endian platforms). fn to_le(&mut self); } impl AsByteSliceMut for [u8] { fn as_byte_slice_mut(&mut self) -> &mut [u8] { self } fn to_le(&mut self) {} } macro_rules! impl_as_byte_slice { ($t:ty) => { impl AsByteSliceMut for [$t] { fn as_byte_slice_mut(&mut self) -> &mut [u8] { if self.len() == 0 { unsafe { // must not use null pointer slice::from_raw_parts_mut(0x1 as *mut u8, 0) } } else { unsafe { slice::from_raw_parts_mut(&mut self[0] as *mut $t as *mut u8, self.len() * mem::size_of::<$t>() ) } } } fn to_le(&mut self) { for x in self { *x = x.to_le(); } } } } } impl_as_byte_slice!(u16); impl_as_byte_slice!(u32); impl_as_byte_slice!(u64); #[cfg(feature="i128_support")] impl_as_byte_slice!(u128); impl_as_byte_slice!(usize); impl_as_byte_slice!(i8); impl_as_byte_slice!(i16); impl_as_byte_slice!(i32); impl_as_byte_slice!(i64); #[cfg(feature="i128_support")] impl_as_byte_slice!(i128); impl_as_byte_slice!(isize); macro_rules! impl_as_byte_slice_arrays { ($n:expr,) => {}; ($n:expr, $N:ident, $($NN:ident,)*) => { impl_as_byte_slice_arrays!($n - 1, $($NN,)*); impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { fn as_byte_slice_mut(&mut self) -> &mut [u8] { self[..].as_byte_slice_mut() } fn to_le(&mut self) { self[..].to_le() } } }; (!div $n:expr,) => {}; (!div $n:expr, $N:ident, $($NN:ident,)*) => { impl_as_byte_slice_arrays!(!div $n / 2, $($NN,)*); impl<T> AsByteSliceMut for [T; $n] where [T]: AsByteSliceMut { fn as_byte_slice_mut(&mut self) -> &mut [u8] { self[..].as_byte_slice_mut() } fn to_le(&mut self) { self[..].to_le() } } }; } impl_as_byte_slice_arrays!(32, N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,N,); impl_as_byte_slice_arrays!(!div 4096, N,N,N,N,N,N,N,); /// Iterator which will generate a stream of random items. /// /// This iterator is created via the [`gen_iter`] method on [`Rng`]. /// /// [`gen_iter`]: trait.Rng.html#method.gen_iter /// [`Rng`]: trait.Rng.html #[derive(Debug)] #[allow(deprecated)] #[deprecated(since="0.5.0", note="use Rng::sample_iter instead")] pub struct Generator<T, R: RngCore> { rng: R, _marker: marker::PhantomData<fn() -> T>, } #[allow(deprecated)] impl<T, R: RngCore> Iterator for Generator<T, R> where Standard: Distribution<T> { type Item = T; fn next(&mut self) -> Option<T> { Some(self.rng.gen()) } } /// Iterator which will continuously generate random ascii characters. /// /// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`]. /// /// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars /// [`Rng`]: trait.Rng.html #[derive(Debug)] #[allow(deprecated)] #[deprecated(since="0.5.0", note="use distributions::Alphanumeric instead")] pub struct AsciiGenerator<R: RngCore> { rng: R, } #[allow(deprecated)] impl<R: RngCore> Iterator for AsciiGenerator<R> { type Item = char; fn next(&mut self) -> Option<char> { const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ abcdefghijklmnopqrstuvwxyz\ 0123456789"; Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char) } } /// A convenience extension to [`SeedableRng`] allowing construction from fresh /// entropy. This trait is automatically implemented for any PRNG implementing /// [`SeedableRng`] and is not intended to be implemented by users. /// /// This is equivalent to using `SeedableRng::from_rng(EntropyRng::new())` then /// unwrapping the result. /// /// Since this is convenient and secure, it is the recommended way to create /// PRNGs, though two alternatives may be considered: /// /// * Deterministic creation using [`SeedableRng::from_seed`] with a fixed seed /// * Seeding from `thread_rng`: `SeedableRng::from_rng(thread_rng())?`; /// this will usually be faster and should also be secure, but requires /// trusting one extra component. /// /// ## Example /// /// ``` /// use rand::{Rng, FromEntropy}; /// use rand::rngs::StdRng; /// /// let mut rng = StdRng::from_entropy(); /// println!("Random die roll: {}", rng.gen_range(1, 7)); /// ``` /// /// [`EntropyRng`]: rngs/struct.EntropyRng.html /// [`SeedableRng`]: trait.SeedableRng.html /// [`SeedableRng::from_seed`]: trait.SeedableRng.html#tymethod.from_seed #[cfg(feature="std")] pub trait FromEntropy: SeedableRng { /// Creates a new instance, automatically seeded with fresh entropy. /// /// Normally this will use `OsRng`, but if that fails `JitterRng` will be /// used instead. Both should be suitable for cryptography. It is possible /// that both entropy sources will fail though unlikely; failures would /// almost certainly be platform limitations or build issues, i.e. most /// applications targetting PC/mobile platforms should not need to worry /// about this failing. /// /// # Panics /// /// If all entropy sources fail this will panic. If you need to handle /// errors, use the following code, equivalent aside from error handling: /// /// ``` /// # use rand::Error; /// use rand::prelude::*; /// use rand::rngs::EntropyRng; /// /// # fn try_inner() -> Result<(), Error> { /// // This uses StdRng, but is valid for any R: SeedableRng /// let mut rng = StdRng::from_rng(EntropyRng::new())?; /// /// println!("random number: {}", rng.gen_range(1, 10)); /// # Ok(()) /// # } /// /// # try_inner().unwrap() /// ``` fn from_entropy() -> Self; } #[cfg(feature="std")] impl<R: SeedableRng> FromEntropy for R { fn from_entropy() -> R { R::from_rng(EntropyRng::new()).unwrap_or_else(|err| panic!("FromEntropy::from_entropy() failed: {}", err)) } } /// DEPRECATED: use [`SmallRng`] instead. /// /// Create a weak random number generator with a default algorithm and seed. /// /// It returns the fastest `Rng` algorithm currently available in Rust without /// consideration for cryptography or security. If you require a specifically /// seeded `Rng` for consistency over time you should pick one algorithm and /// create the `Rng` yourself. /// /// This will seed the generator with randomness from `thread_rng`. /// /// [`SmallRng`]: rngs/struct.SmallRng.html #[deprecated(since="0.5.0", note="removed in favor of SmallRng")] #[cfg(feature="std")] pub fn weak_rng() -> XorShiftRng { XorShiftRng::from_rng(thread_rng()).unwrap_or_else(|err| panic!("weak_rng failed: {:?}", err)) } /// Generates a random value using the thread-local random number generator. /// /// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for /// documentation of the entropy source and [`Standard`] for documentation of /// distributions and type-specific generation. /// /// # Examples /// /// ``` /// let x = rand::random::<u8>(); /// println!("{}", x); /// /// let y = rand::random::<f64>(); /// println!("{}", y); /// /// if rand::random() { // generates a boolean /// println!("Better lucky than good!"); /// } /// ``` /// /// If you're calling `random()` in a loop, caching the generator as in the /// following example can increase performance. /// /// ``` /// # #![allow(deprecated)] /// use rand::Rng; /// /// let mut v = vec![1, 2, 3]; /// /// for x in v.iter_mut() { /// *x = rand::random() /// } /// /// // can be made faster by caching thread_rng /// /// let mut rng = rand::thread_rng(); /// /// for x in v.iter_mut() { /// *x = rng.gen(); /// } /// ``` /// /// [`thread_rng`]: fn.thread_rng.html /// [`Standard`]: distributions/struct.Standard.html #[cfg(feature="std")] #[inline] pub fn random<T>() -> T where Standard: Distribution<T> { thread_rng().gen() } /// DEPRECATED: use `seq::sample_iter` instead. /// /// Randomly sample up to `amount` elements from a finite iterator. /// The order of elements in the sample is not random. /// /// # Example /// /// ``` /// # #![allow(deprecated)] /// use rand::{thread_rng, sample}; /// /// let mut rng = thread_rng(); /// let sample = sample(&mut rng, 1..100, 5); /// println!("{:?}", sample); /// ``` #[cfg(feature="std")] #[inline] #[deprecated(since="0.4.0", note="renamed to seq::sample_iter")] pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T> where I: IntoIterator<Item=T>, R: Rng, { // the legacy sample didn't care whether amount was met seq::sample_iter(rng, iterable, amount) .unwrap_or_else(|e| e) } #[cfg(test)] mod test { use rngs::mock::StepRng; use super::*; #[cfg(all(not(feature="std"), feature="alloc"))] use alloc::boxed::Box; pub struct TestRng<R> { inner: R } impl<R: RngCore> RngCore for TestRng<R> { fn next_u32(&mut self) -> u32 { self.inner.next_u32() } fn next_u64(&mut self) -> u64 { self.inner.next_u64() } fn fill_bytes(&mut self, dest: &mut [u8]) { self.inner.fill_bytes(dest) } fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> { self.inner.try_fill_bytes(dest) } } pub fn rng(seed: u64) -> TestRng<StdRng> { TestRng { inner: StdRng::seed_from_u64(seed) } } #[test] fn test_fill_bytes_default() { let mut r = StepRng::new(0x11_22_33_44_55_66_77_88, 0); // check every remainder mod 8, both in small and big vectors. let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87]; for &n in lengths.iter() { let mut buffer = [0u8; 87]; let v = &mut buffer[0..n]; r.fill_bytes(v); // use this to get nicer error messages. for (i, &byte) in v.iter().enumerate() { if byte == 0 { panic!("byte {} of {} is zero", i, n) } } } } #[test] fn test_fill() { let x = 9041086907909331047; // a random u64 let mut rng = StepRng::new(x, 0); // Convert to byte sequence and back to u64; byte-swap twice if BE. let mut array = [0u64; 2]; rng.fill(&mut array[..]); assert_eq!(array, [x, x]); assert_eq!(rng.next_u64(), x); // Convert to bytes then u32 in LE order let mut array = [0u32; 2]; rng.fill(&mut array[..]); assert_eq!(array, [x as u32, (x >> 32) as u32]); assert_eq!(rng.next_u32(), x as u32); } #[test] fn test_fill_empty() { let mut array = [0u32; 0]; let mut rng = StepRng::new(0, 1); rng.fill(&mut array); rng.fill(&mut array[..]); } #[test] fn test_gen_range() { let mut r = rng(101); for _ in 0..1000 { let a = r.gen_range(-3, 42); assert!(a >= -3 && a < 42); assert_eq!(r.gen_range(0, 1), 0); assert_eq!(r.gen_range(-12, -11), -12); } for _ in 0..1000 { let a = r.gen_range(10, 42); assert!(a >= 10 && a < 42); assert_eq!(r.gen_range(0, 1), 0); assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000); } } #[test] #[should_panic] fn test_gen_range_panic_int() { let mut r = rng(102); r.gen_range(5, -2); } #[test] #[should_panic] fn test_gen_range_panic_usize() { let mut r = rng(103); r.gen_range(5, 2); } #[test] #[allow(deprecated)] fn test_gen_weighted_bool() { let mut r = rng(104); assert_eq!(r.gen_weighted_bool(0), true); assert_eq!(r.gen_weighted_bool(1), true); } #[test] fn test_gen_bool() { let mut r = rng(105); for _ in 0..5 { assert_eq!(r.gen_bool(0.0), false); assert_eq!(r.gen_bool(1.0), true); } } #[test] fn test_choose() { let mut r = rng(107); assert_eq!(r.choose(&[1, 1, 1]).map(|&x|x), Some(1)); let v: &[isize] = &[]; assert_eq!(r.choose(v), None); } #[test] fn test_shuffle() { let mut r = rng(108); let empty: &mut [isize] = &mut []; r.shuffle(empty); let mut one = [1]; r.shuffle(&mut one); let b: &[_] = &[1]; assert_eq!(one, b); let mut two = [1, 2]; r.shuffle(&mut two); assert!(two == [1, 2] || two == [2, 1]); let mut x = [1, 1, 1]; r.shuffle(&mut x); let b: &[_] = &[1, 1, 1]; assert_eq!(x, b); } #[test] fn test_rng_trait_object() { use distributions::{Distribution, Standard}; let mut rng = rng(109); let mut r = &mut rng as &mut RngCore; r.next_u32(); r.gen::<i32>(); let mut v = [1, 1, 1]; r.shuffle(&mut v); let b: &[_] = &[1, 1, 1]; assert_eq!(v, b); assert_eq!(r.gen_range(0, 1), 0); let _c: u8 = Standard.sample(&mut r); } #[test] #[cfg(feature="alloc")] fn test_rng_boxed_trait() { use distributions::{Distribution, Standard}; let rng = rng(110); let mut r = Box::new(rng) as Box<RngCore>; r.next_u32(); r.gen::<i32>(); let mut v = [1, 1, 1]; r.shuffle(&mut v); let b: &[_] = &[1, 1, 1]; assert_eq!(v, b); assert_eq!(r.gen_range(0, 1), 0); let _c: u8 = Standard.sample(&mut r); } #[test] #[cfg(feature="std")] fn test_random() { // not sure how to test this aside from just getting some values let _n : usize = random(); let _f : f32 = random(); let _o : Option<Option<i8>> = random(); let _many : ((), (usize, isize, Option<(u32, (bool,))>), (u8, i8, u16, i16, u32, i32, u64, i64), (f32, (f64, (f64,)))) = random(); } }