1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// https://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Interface to the random number generator of the operating system.

use std::fmt;
use rand_core::{CryptoRng, RngCore, Error, impls};

/// A random number generator that retrieves randomness straight from the
/// operating system.
///
/// This is the preferred external source of entropy for most applications.
/// Commonly it is used to initialize a user-space RNG, which can then be used
/// to generate random values with much less overhead than `OsRng`.
///
/// You may prefer to use [`EntropyRng`] instead of `OsRng`. It is unlikely, but
/// not entirely theoretical, for `OsRng` to fail. In such cases [`EntropyRng`]
/// falls back on a good alternative entropy source.
///
/// `OsRng` usually does not block. On some systems, and notably virtual
/// machines, it may block very early in the init process, when the OS CSPRNG
/// has not yet been seeded.
///
/// `OsRng::new()` is guaranteed to be very cheap (after the first successful
/// call), and will never consume more than one file handle per process.
///
/// # Platform sources
///
/// - Linux, Android: reads from the `getrandom(2)` system call if available,
///   otherwise from `/dev/urandom`.
/// - macOS, iOS: calls `SecRandomCopyBytes`.
/// - Windows: calls `RtlGenRandom`.
/// - WASM (with `stdweb` feature): calls `window.crypto.getRandomValues` in
///   browsers, and in Node.js `require("crypto").randomBytes`.
/// - Emscripten: reads from emulated `/dev/urandom`, which maps to the same
///   interfaces as `stdweb`, but falls back to the insecure `Math.random()` if
///   unavailable.
/// - OpenBSD: calls `getentropy(2)`.
/// - FreeBSD: uses the `kern.arandom` `sysctl(2)` mib.
/// - Fuchsia: calls `cprng_draw`.
/// - Redox: reads from `rand:` device.
/// - CloudABI: calls `random_get`.
/// - Other Unix-like systems: reads directly from `/dev/urandom`.
///
/// ## Notes on Unix `/dev/urandom`
///
/// Many Unix systems provide `/dev/random` as well as `/dev/urandom`. On all
/// modern systems these two interfaces offer identical quality, with the
/// difference that on some systems `/dev/random` may block. This is a dated
/// design, and `/dev/urandom` is preferred by cryptography experts.
/// See [Myths about urandom](https://www.2uo.de/myths-about-urandom/).
///
/// On some systems reading from `/dev/urandom` “may return data prior to the
/// entropy pool being initialized”. I.e., early in the boot process, and
/// especially on virtual machines, `/dev/urandom` may return data that is less
/// random. As a countermeasure we try to do a single read from `/dev/random` in
/// non-blocking mode. If the OS RNG is not yet properly seeded, we will get an
/// error. Because we keep one file descriptor to `/dev/urandom` open when
/// succesful, this is only a small one-time cost.
///
/// # Panics
///
/// `OsRng` is extremely unlikely to fail if `OsRng::new()` was succesfull. But
/// in case it does fail, only [`try_fill_bytes`] is able to report the cause.
/// Depending on the error the other [`RngCore`] methods will retry several
/// times, and panic in case the error remains.
///
/// [`EntropyRng`]: struct.EntropyRng.html
/// [`RngCore`]: ../trait.RngCore.html
/// [`try_fill_bytes`]: ../trait.RngCore.html#method.tymethod.try_fill_bytes


#[allow(unused)]    // not used by all targets
#[derive(Clone)]
pub struct OsRng(imp::OsRng);

impl fmt::Debug for OsRng {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

impl OsRng {
    /// Create a new `OsRng`.
    pub fn new() -> Result<OsRng, Error> {
        imp::OsRng::new().map(OsRng)
    }
}

impl CryptoRng for OsRng {}

impl RngCore for OsRng {
    fn next_u32(&mut self) -> u32 {
        impls::next_u32_via_fill(self)
    }

    fn next_u64(&mut self) -> u64 {
        impls::next_u64_via_fill(self)
    }

    fn fill_bytes(&mut self, dest: &mut [u8]) {
        use std::{time, thread};

        // We cannot return Err(..), so we try to handle before panicking.
        const MAX_RETRY_PERIOD: u32 = 10; // max 10s
        const WAIT_DUR_MS: u32 = 100; // retry every 100ms
        let wait_dur = time::Duration::from_millis(WAIT_DUR_MS as u64);
        const RETRY_LIMIT: u32 = (MAX_RETRY_PERIOD * 1000) / WAIT_DUR_MS;
        const TRANSIENT_RETRIES: u32 = 8;
        let mut err_count = 0;
        let mut error_logged = false;

        loop {
            if let Err(e) = self.try_fill_bytes(dest) {
                if err_count >= RETRY_LIMIT {
                    error!("OsRng failed too many times; last error: {}", e);
                    panic!("OsRng failed too many times; last error: {}", e);
                }

                if e.kind.should_wait() {
                    if !error_logged {
                        warn!("OsRng failed; waiting up to {}s and retrying. Error: {}",
                                MAX_RETRY_PERIOD, e);
                        error_logged = true;
                    }
                    err_count += 1;
                    thread::sleep(wait_dur);
                    continue;
                } else if e.kind.should_retry() {
                    if !error_logged {
                        warn!("OsRng failed; retrying up to {} times. Error: {}",
                                TRANSIENT_RETRIES, e);
                        error_logged = true;
                    }
                    err_count += (RETRY_LIMIT + TRANSIENT_RETRIES - 1)
                            / TRANSIENT_RETRIES;    // round up
                    continue;
                } else {
                    error!("OsRng failed: {}", e);
                    panic!("OsRng fatal error: {}", e);
                }
            }

            break;
        }
    }

    fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
        self.0.try_fill_bytes(dest)
    }
}

#[cfg(all(unix,
          not(target_os = "cloudabi"),
          not(target_os = "freebsd"),
          not(target_os = "fuchsia"),
          not(target_os = "ios"),
          not(target_os = "macos"),
          not(target_os = "openbsd"),
          not(target_os = "redox")))]
mod imp {
    extern crate libc;
    use {Error, ErrorKind};
    use std::fs::{OpenOptions, File};
    use std::os::unix::fs::OpenOptionsExt;
    use std::io;
    use std::io::Read;
    use std::sync::{Once, Mutex, ONCE_INIT};

    #[derive(Clone, Debug)]
    pub struct OsRng(OsRngMethod);

    #[derive(Clone, Debug)]
    enum OsRngMethod {
        GetRandom,
        RandomDevice,
    }

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            if is_getrandom_available() {
                return Ok(OsRng(OsRngMethod::GetRandom));
            }

            open_dev_random()?;
            Ok(OsRng(OsRngMethod::RandomDevice))
        }

        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            match self.0 {
                OsRngMethod::GetRandom => getrandom_try_fill(dest),
                OsRngMethod::RandomDevice => dev_random_try_fill(dest),
            }
        }
    }

    #[cfg(all(any(target_os = "linux", target_os = "android"),
              any(target_arch = "x86_64", target_arch = "x86",
                  target_arch = "arm", target_arch = "aarch64",
                  target_arch = "s390x", target_arch = "powerpc",
                  target_arch = "mips", target_arch = "mips64")))]
    fn getrandom(buf: &mut [u8]) -> libc::c_long {
        extern "C" {
            fn syscall(number: libc::c_long, ...) -> libc::c_long;
        }

        #[cfg(target_arch = "x86_64")]
        const NR_GETRANDOM: libc::c_long = 318;
        #[cfg(target_arch = "x86")]
        const NR_GETRANDOM: libc::c_long = 355;
        #[cfg(target_arch = "arm")]
        const NR_GETRANDOM: libc::c_long = 384;
        #[cfg(target_arch = "aarch64")]
        const NR_GETRANDOM: libc::c_long = 278;
         #[cfg(target_arch = "s390x")]
        const NR_GETRANDOM: libc::c_long = 349;
        #[cfg(target_arch = "powerpc")]
        const NR_GETRANDOM: libc::c_long = 359;
        #[cfg(target_arch = "mips")] // old ABI
        const NR_GETRANDOM: libc::c_long = 4353;
        #[cfg(target_arch = "mips64")]
        const NR_GETRANDOM: libc::c_long = 5313;

        const GRND_NONBLOCK: libc::c_uint = 0x0001;

        unsafe {
            syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)
        }
    }

    #[cfg(not(all(any(target_os = "linux", target_os = "android"),
                  any(target_arch = "x86_64", target_arch = "x86",
                      target_arch = "arm", target_arch = "aarch64",
                      target_arch = "s390x", target_arch = "powerpc",
                      target_arch = "mips", target_arch = "mips64"))))]
    fn getrandom(_buf: &mut [u8]) -> libc::c_long { -1 }

    fn getrandom_try_fill(dest: &mut [u8]) -> Result<(), Error> {
        trace!("OsRng: reading {} bytes via getrandom", dest.len());
        let mut read = 0;
        let len = dest.len();
        while read < len {
            let result = getrandom(&mut dest[read..]);
            if result == -1 {
                let err = io::Error::last_os_error();
                let kind = err.kind();
                if kind == io::ErrorKind::Interrupted {
                    continue;
                } else if kind == io::ErrorKind::WouldBlock {
                    // Potentially this would waste bytes, but since we use
                    // /dev/urandom blocking only happens if not initialised.
                    // Also, wasting the bytes in dest doesn't matter very much.
                    return Err(Error::with_cause(
                        ErrorKind::NotReady,
                        "getrandom not ready",
                        err,
                    ));
                } else {
                    return Err(Error::with_cause(
                        ErrorKind::Unavailable,
                        "unexpected getrandom error",
                        err,
                    ));
                }
            } else {
                read += result as usize;
            }
        }
        Ok(())
    }

    #[cfg(all(any(target_os = "linux", target_os = "android"),
              any(target_arch = "x86_64", target_arch = "x86",
                  target_arch = "arm", target_arch = "aarch64",
                  target_arch = "s390x", target_arch = "powerpc",
                  target_arch = "mips", target_arch = "mips64")))]
    fn is_getrandom_available() -> bool {
        use std::sync::atomic::{AtomicBool, ATOMIC_BOOL_INIT, Ordering};
        use std::sync::{Once, ONCE_INIT};

        static CHECKER: Once = ONCE_INIT;
        static AVAILABLE: AtomicBool = ATOMIC_BOOL_INIT;

        CHECKER.call_once(|| {
            debug!("OsRng: testing getrandom");
            let mut buf: [u8; 0] = [];
            let result = getrandom(&mut buf);
            let available = if result == -1 {
                let err = io::Error::last_os_error().raw_os_error();
                err != Some(libc::ENOSYS)
            } else {
                true
            };
            AVAILABLE.store(available, Ordering::Relaxed);
            info!("OsRng: using {}", if available { "getrandom" } else { "/dev/urandom" });
        });

        AVAILABLE.load(Ordering::Relaxed)
    }

    #[cfg(not(all(any(target_os = "linux", target_os = "android"),
                  any(target_arch = "x86_64", target_arch = "x86",
                      target_arch = "arm", target_arch = "aarch64",
                      target_arch = "s390x", target_arch = "powerpc",
                      target_arch = "mips", target_arch = "mips64"))))]
    fn is_getrandom_available() -> bool { false }

    // TODO: remove outer Option when `Mutex::new(None)` is a constant expression
    static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None;
    static READ_RNG_ONCE: Once = ONCE_INIT;

    // Note: all instances use a single internal file handle, to prevent
    // possible exhaustion of file descriptors.
    //
    // We do a single read from `/dev/random` in non-blocking mode. If the OS
    // RNG is not yet properly seeded, we will get an error, instead of silently
    // getting less random bytes, as `/dev/urandom` can return. Because we keep
    // `/dev/urandom` open when succesful, this is only a small one-time cost.
    fn open_dev_random() -> Result<(), Error> {
        fn map_err(err: io::Error) -> Error {
            match err.kind() {
                io::ErrorKind::Interrupted =>
                        Error::new(ErrorKind::Transient, "interrupted"),
                io::ErrorKind::WouldBlock =>
                        Error::with_cause(ErrorKind::NotReady,
                        "OS RNG not yet seeded", err),
                _ => Error::with_cause(ErrorKind::Unavailable,
                        "error while opening random device", err)
            }
        }

        READ_RNG_ONCE.call_once(|| {
            unsafe { READ_RNG_FILE = Some(Mutex::new(None)) }
        });

        // We try opening the file outside the `call_once` fn because we cannot
        // clone the error, thus we must retry on failure.

        let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
        let mut guard = mutex.lock().unwrap();
        if (*guard).is_none() {
            {
                info!("OsRng: opening random device /dev/random");
                let mut file = OpenOptions::new()
                    .read(true)
                    .custom_flags(libc::O_NONBLOCK)
                    .open("/dev/random")
                    .map_err(map_err)?;
                let mut buf = [0u8; 1];
                file.read_exact(&mut buf).map_err(map_err)?;
            }

            info!("OsRng: opening random device /dev/urandom");
            let file = File::open("/dev/urandom").map_err(map_err)?;
            *guard = Some(file);
        };
        Ok(())
    }

    fn dev_random_try_fill(dest: &mut [u8]) -> Result<(), Error> {
        if dest.len() == 0 { return Ok(()); }
        trace!("OsRng: reading {} bytes from random device", dest.len());

        // We expect this function only to be used after `open_dev_random` was
        // succesful. Therefore we can assume that our memory was set with a
        // valid object.
        let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
        let mut guard = mutex.lock().unwrap();
        let file = (*guard).as_mut().unwrap();
        // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`.
        file.read_exact(dest).map_err(|err| {
            match err.kind() {
                ::std::io::ErrorKind::WouldBlock => Error::with_cause(
                    ErrorKind::NotReady,
                    "reading from random device would block", err),
                _ => Error::with_cause(ErrorKind::Unavailable,
                    "error reading random device", err)
            }
        })
    }
}

#[cfg(target_os = "cloudabi")]
mod imp {
    extern crate cloudabi;

    use {Error, ErrorKind};

    #[derive(Clone, Debug)]
    pub struct OsRng;

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            Ok(OsRng)
        }

        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            trace!("OsRng: reading {} bytes via cloadabi::random_get", dest.len());
            let errno = unsafe { cloudabi::random_get(dest) };
            if errno == cloudabi::errno::SUCCESS {
                Ok(())
            } else {
                // Cloudlibc provides its own `strerror` implementation so we
                // can use `from_raw_os_error` here.
                Err(Error::with_cause(
                    ErrorKind::Unavailable,
                    "random_get() system call failed",
                    io::Error::from_raw_os_error(errno),
                ))
            }
        }
    }
}

#[cfg(any(target_os = "macos", target_os = "ios"))]
mod imp {
    extern crate libc;

    use {Error, ErrorKind};
    
    use std::io;
    use self::libc::{c_int, size_t};

    #[derive(Clone, Debug)]
    pub struct OsRng;

    enum SecRandom {}

    #[allow(non_upper_case_globals)]
    const kSecRandomDefault: *const SecRandom = 0 as *const SecRandom;

    #[link(name = "Security", kind = "framework")]
    extern {
        fn SecRandomCopyBytes(rnd: *const SecRandom,
                              count: size_t, bytes: *mut u8) -> c_int;
    }

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            Ok(OsRng)
        }
        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            trace!("OsRng: reading {} bytes via SecRandomCopyBytes", dest.len());
            let ret = unsafe {
                SecRandomCopyBytes(kSecRandomDefault, dest.len() as size_t, dest.as_mut_ptr())
            };
            if ret == -1 {
                Err(Error::with_cause(
                    ErrorKind::Unavailable,
                    "couldn't generate random bytes",
                    io::Error::last_os_error()))
            } else {
                Ok(())
            }
        }
    }
}

#[cfg(target_os = "freebsd")]
mod imp {
    extern crate libc;

    use {Error, ErrorKind};
    
    use std::ptr;
    use std::io;

    #[derive(Clone, Debug)]
    pub struct OsRng;

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            Ok(OsRng)
        }
        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            let mib = [libc::CTL_KERN, libc::KERN_ARND];
            trace!("OsRng: reading {} bytes via kern.arandom", dest.len());
            // kern.arandom permits a maximum buffer size of 256 bytes
            for s in dest.chunks_mut(256) {
                let mut s_len = s.len();
                let ret = unsafe {
                    libc::sysctl(mib.as_ptr(), mib.len() as libc::c_uint,
                                 s.as_mut_ptr() as *mut _, &mut s_len,
                                 ptr::null(), 0)
                };
                if ret == -1 || s_len != s.len() {
                    return Err(Error::with_cause(
                        ErrorKind::Unavailable,
                        "kern.arandom sysctl failed",
                        io::Error::last_os_error()));
                }
            }
            Ok(())
        }
    }
}

#[cfg(target_os = "openbsd")]
mod imp {
    extern crate libc;

    use {Error, ErrorKind};
    
    use std::io;

    #[derive(Clone, Debug)]
    pub struct OsRng;

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            Ok(OsRng)
        }
        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            // getentropy(2) permits a maximum buffer size of 256 bytes
            for s in dest.chunks_mut(256) {
                trace!("OsRng: reading {} bytes via getentropy", s.len());
                let ret = unsafe {
                    libc::getentropy(s.as_mut_ptr() as *mut libc::c_void, s.len())
                };
                if ret == -1 {
                    return Err(Error::with_cause(
                        ErrorKind::Unavailable,
                        "getentropy failed",
                        io::Error::last_os_error()));
                }
            }
            Ok(())
        }
    }
}

#[cfg(target_os = "redox")]
mod imp {
    use {Error, ErrorKind};
    use std::fs::File;
    use std::io::Read;
    use std::io::ErrorKind::*;
    use std::sync::{Once, Mutex, ONCE_INIT};

    #[derive(Clone, Debug)]
    pub struct OsRng();

    // TODO: remove outer Option when `Mutex::new(None)` is a constant expression
    static mut READ_RNG_FILE: Option<Mutex<Option<File>>> = None;
    static READ_RNG_ONCE: Once = ONCE_INIT;

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            READ_RNG_ONCE.call_once(|| {
                unsafe { READ_RNG_FILE = Some(Mutex::new(None)) }
            });

            // We try opening the file outside the `call_once` fn because we cannot
            // clone the error, thus we must retry on failure.

            let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
            let mut guard = mutex.lock().unwrap();
            if (*guard).is_none() {
                info!("OsRng: opening random device 'rand:'");
                let file = File::open("rand:").map_err(|err| {
                    match err.kind() {
                        Interrupted => Error::new(ErrorKind::Transient, "interrupted"),
                        WouldBlock => Error::with_cause(ErrorKind::NotReady,
                                "opening random device would block", err),
                        _ => Error::with_cause(ErrorKind::Unavailable,
                                "error while opening random device", err)
                    }
                })?;
                *guard = Some(file);
            };
            Ok(OsRng())
        }

        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            if dest.len() == 0 { return Ok(()); }
            trace!("OsRng: reading {} bytes from random device", dest.len());

            // Since we have an instance of Self, we can assume that our memory was
            // set with a valid object.
            let mutex = unsafe { READ_RNG_FILE.as_ref().unwrap() };
            let mut guard = mutex.lock().unwrap();
            let file = (*guard).as_mut().unwrap();
            // Use `std::io::read_exact`, which retries on `ErrorKind::Interrupted`.
            file.read_exact(dest).map_err(|err| {
                Error::with_cause(ErrorKind::Unavailable,
                                  "error reading random device", err)
            })
        }
    }
}

#[cfg(target_os = "fuchsia")]
mod imp {
    extern crate fuchsia_zircon;

    use {Error, ErrorKind};
    
    use std::io;

    #[derive(Clone, Debug)]
    pub struct OsRng;

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            Ok(OsRng)
        }
        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            for s in dest.chunks_mut(fuchsia_zircon::sys::ZX_CPRNG_DRAW_MAX_LEN) {
                trace!("OsRng: reading {} bytes via cprng_draw", s.len());
                let mut filled = 0;
                while filled < s.len() {
                    match fuchsia_zircon::cprng_draw(&mut s[filled..]) {
                        Ok(actual) => filled += actual,
                        Err(e) => {
                            return Err(Error::with_cause(
                                ErrorKind::Unavailable,
                                "cprng_draw failed",
                                e));
                        }
                    };
                }
            }
            Ok(())
        }
    }
}

#[cfg(windows)]
mod imp {
    extern crate winapi;
    
    use {Error, ErrorKind};
    
    use std::io;

    use self::winapi::shared::minwindef::ULONG;
    use self::winapi::um::ntsecapi::RtlGenRandom;
    use self::winapi::um::winnt::PVOID;

    #[derive(Clone, Debug)]
    pub struct OsRng;

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            Ok(OsRng)
        }
        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            // RtlGenRandom takes an ULONG (u32) for the length so we need to
            // split up the buffer.
            for slice in dest.chunks_mut(<ULONG>::max_value() as usize) {
                trace!("OsRng: reading {} bytes via RtlGenRandom", slice.len());
                let ret = unsafe {
                    RtlGenRandom(slice.as_mut_ptr() as PVOID, slice.len() as ULONG)
                };
                if ret == 0 {
                    return Err(Error::with_cause(
                        ErrorKind::Unavailable,
                        "couldn't generate random bytes",
                        io::Error::last_os_error()));
                }
            }
            Ok(())
        }
    }
}

#[cfg(all(target_arch = "wasm32",
          not(target_os = "emscripten"),
          not(feature = "stdweb")))]
mod imp {
    use {Error, ErrorKind};

    #[derive(Clone, Debug)]
    pub struct OsRng;

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            Err(Error::new(ErrorKind::Unavailable,
                           "not supported on WASM without stdweb"))
        }

        pub fn try_fill_bytes(&mut self, _v: &mut [u8]) -> Result<(), Error> {
            Err(Error::new(ErrorKind::Unavailable,
                           "not supported on WASM without stdweb"))
        }
    }
}

#[cfg(all(target_arch = "wasm32",
          not(target_os = "emscripten"),
          feature = "stdweb"))]
mod imp {
    use std::mem;
    use stdweb::unstable::TryInto;
    use stdweb::web::error::Error as WebError;
    use {Error, ErrorKind};

    #[derive(Clone, Debug)]
    enum OsRngInner {
        Browser,
        Node
    }

    #[derive(Clone, Debug)]
    pub struct OsRng(OsRngInner);

    impl OsRng {
        pub fn new() -> Result<OsRng, Error> {
            let result = js! {
                try {
                    if (
                        typeof window === "object" &&
                        typeof window.crypto === "object" &&
                        typeof window.crypto.getRandomValues === "function"
                    ) {
                        return { success: true, ty: 1 };
                    }

                    if (typeof require("crypto").randomBytes === "function") {
                        return { success: true, ty: 2 };
                    }

                    return { success: false, error: new Error("not supported") };
                } catch(err) {
                    return { success: false, error: err };
                }
            };

            if js!{ return @{ result.as_ref() }.success } == true {
                let ty = js!{ return @{ result }.ty };

                if ty == 1 { Ok(OsRng(OsRngInner::Browser)) }
                else if ty == 2 { Ok(OsRng(OsRngInner::Node)) }
                else { unreachable!() }
            } else {
                let err: WebError = js!{ return @{ result }.error }.try_into().unwrap();
                Err(Error::with_cause(ErrorKind::Unavailable, "WASM Error", err))
            }
        }

        pub fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
            assert_eq!(mem::size_of::<usize>(), 4);

            let len = dest.len() as u32;
            let ptr = dest.as_mut_ptr() as i32;

            let result = match self.0 {
                OsRngInner::Browser => js! {
                    try {
                        let array = new Uint8Array(@{ len });
                        window.crypto.getRandomValues(array);
                        HEAPU8.set(array, @{ ptr });

                        return { success: true };
                    } catch(err) {
                        return { success: false, error: err };
                    }
                },
                OsRngInner::Node => js! {
                    try {
                        let bytes = require("crypto").randomBytes(@{ len });
                        HEAPU8.set(new Uint8Array(bytes), @{ ptr });

                        return { success: true };
                    } catch(err) {
                        return { success: false, error: err };
                    }
                }
            };

            if js!{ return @{ result.as_ref() }.success } == true {
                Ok(())
            } else {
                let err: WebError = js!{ return @{ result }.error }.try_into().unwrap();
                Err(Error::with_cause(ErrorKind::Unexpected, "WASM Error", err))
            }
        }
    }
}

#[cfg(test)]
mod test {
    use RngCore;
    use OsRng;

    #[test]
    fn test_os_rng() {
        let mut r = OsRng::new().unwrap();

        r.next_u32();
        r.next_u64();

        let mut v1 = [0u8; 1000];
        r.fill_bytes(&mut v1);

        let mut v2 = [0u8; 1000];
        r.fill_bytes(&mut v2);

        let mut n_diff_bits = 0;
        for i in 0..v1.len() {
            n_diff_bits += (v1[i] ^ v2[i]).count_ones();
        }

        // Check at least 1 bit per byte differs. p(failure) < 1e-1000 with random input.
        assert!(n_diff_bits >= v1.len() as u32);
    }

    #[cfg(not(any(target_arch = "wasm32", target_arch = "asmjs")))]
    #[test]
    fn test_os_rng_tasks() {
        use std::sync::mpsc::channel;
        use std::thread;

        let mut txs = vec!();
        for _ in 0..20 {
            let (tx, rx) = channel();
            txs.push(tx);

            thread::spawn(move|| {
                // wait until all the tasks are ready to go.
                rx.recv().unwrap();

                // deschedule to attempt to interleave things as much
                // as possible (XXX: is this a good test?)
                let mut r = OsRng::new().unwrap();
                thread::yield_now();
                let mut v = [0u8; 1000];

                for _ in 0..100 {
                    r.next_u32();
                    thread::yield_now();
                    r.next_u64();
                    thread::yield_now();
                    r.fill_bytes(&mut v);
                    thread::yield_now();
                }
            });
        }

        // start all the tasks
        for tx in txs.iter() {
            tx.send(()).unwrap();
        }
    }
}