1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
use core::ops::Range;

/// Contains a mapping from index (key) to a set of values. Each set of values is stored in order
/// of increasing index (key).
///
/// `RampTable` is optimized for certain usage patterns. For those patterns, it is an efficient
/// representation. For other usage patterns, `RampTable` may be inefficient or unsuitable.
/// Common usages are for adjacency lists in graphs, sparse matrices, and in building YACC grammars.
///
/// A `RampTable` stores its data in two vectors: `index` and `values`. The `index` table contains
/// offsets into `values`. These offsets are stored in non-decreasing order. The numeric difference
/// between two consecutive entries in `values` gives the length of the slice within `values that
/// corresponds to the items for the lower index.
///
/// The usage pattern that `RampTable` is designed for is appending a sequence of (key, value)
/// pairs, where each key is in non-decreasing order. The result is a representation that is
/// compact (has high data density), has constant-time lookup, and efficiently represents datasets
/// that have a wide variety of counts of items.
///
/// This representation also allows acquiring references to slices that span more than one key.
///
/// Terminology:
/// * key - An integer which identifies an ordered list of values in the table.
/// * value - One item that is present in the table. Each value is associated with exactly one key.
///
/// Note that it is possible to add _unowned_ values to the end of the `RampTable`. A well-formed
/// table will not have any unowned values.
#[derive(Clone, Eq, PartialEq)]
pub struct RampTable<T> {
    /// contains the index into values[] where each entry starts
    pub index: Vec<u32>,
    pub values: Vec<T>,
}

impl<T> Default for RampTable<T> {
    fn default() -> Self {
        Self {
            index: vec![0],
            values: Vec::new(),
        }
    }
}

impl<T> RampTable<T> {
    /// Creates a new, empty `RampTable`.
    pub fn new() -> Self {
        Self {
            index: vec![0],
            values: Vec::new(),
        }
    }

    /// Creates a new, empty `RampTable`, with space preallocated for keys and values.
    pub fn with_capacity(keys_capacity: usize, values_capacity: usize) -> Self {
        let mut table = Self {
            index: Vec::with_capacity(keys_capacity + 1),
            values: Vec::with_capacity(values_capacity),
        };
        table.index.push(0);
        table
    }

    /// Returns `true` if there are no keys in this `RampTable`. Equivalent to `self.len() == 0`.
    ///
    /// Note that a `RampTable` may still contain unassociated values even if `is_empty` returns
    /// `true.
    pub fn is_empty(&self) -> bool {
        self.index.len() == 1
    }

    /// The number of keys in this `RampTable`. All keys are numbered sequentially.
    pub fn len(&self) -> usize {
        self.index.len() - 1
    }

    /// Pushes a value onto the end of the `RampTable`. The item is _not_ yet associated with any
    /// key. In order to associate all unowned values with the next key, call `finish_key`.
    pub fn push_value(&mut self, value: T) {
        self.values.push(value);
    }

    /// Adds a new key to the end of the key list, and implicitly associates all unassociated values
    /// with that key.
    ///
    /// Example:
    ///
    /// ```
    /// # use ramp_table::RampTable;
    /// let mut rt = RampTable::new();
    /// rt.push_value("foo");
    /// rt.push_value("bar");
    /// rt.finish_key();
    /// assert_eq!(rt.entry_values(0), &["foo", "bar"]);
    /// ```
    pub fn finish_key(&mut self) -> usize {
        let key = self.index.len() - 1;
        self.index.push(self.values.len() as u32);
        key
    }

    /// Deletes all keys and values from the `RampTable`.
    pub fn clear(&mut self) {
        self.values.clear();
        self.index.clear();
        self.index.push(0);
    }

    /// Iterates slices of values, one slice for each key.
    ///
    /// Example:
    ///
    /// ```
    /// # use ramp_table::RampTable;
    /// let mut rt = RampTable::new();
    /// rt.push_value("foo");
    /// rt.push_value("bar");
    /// rt.finish_key(); // 0
    /// rt.finish_key(); // 1
    /// rt.push_value("alpha");
    /// rt.push_value("bravo");
    /// rt.finish_key(); // 2
    /// let mut ii = rt.iter();
    /// assert_eq!(ii.next(), Some(&["foo", "bar"][..]));
    /// assert_eq!(ii.next(), Some(&[][..]));
    /// assert_eq!(ii.next(), Some(&["alpha", "bravo"][..]));
    /// assert_eq!(ii.next(), None);
    /// ```
    pub fn iter(
        &self,
    ) -> impl Iterator<Item = &[T]> + '_ + DoubleEndedIterator + ExactSizeIterator {
        self.index
            .windows(2)
            .map(move |w| &self.values[w[0] as usize..w[1] as usize])
    }

    /// Iterates mutable slices of values, one slice for each key.
    ///
    /// Example:
    ///
    /// ```
    /// # use ramp_table::RampTable;
    /// let mut rt = RampTable::new();
    /// rt.push_value("foo");
    /// rt.push_value("bar");
    /// rt.finish_key(); // 0
    /// rt.iter_mut().next().unwrap()[1] = "BAR";
    /// assert_eq!(rt.entry_values(0), &["foo", "BAR"][..]);
    /// ```
    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
        let mut index_iter = self.index.iter();
        let last_index = (*index_iter.next().unwrap()) as usize;
        IterMut {
            last_index,
            index_iter,
            values: &mut self.values,
        }
    }

    pub fn entry_values_range(&self, index: usize) -> Range<usize> {
        self.index[index] as usize..self.index[index + 1] as usize
    }

    pub fn entry_values(&self, index: usize) -> &[T] {
        &self.values[self.entry_values_range(index)]
    }

    pub fn entry_values_mut(&mut self, index: usize) -> &mut [T] {
        let range = self.entry_values_range(index);
        &mut self.values[range]
    }

    /// Returns a slice over _all_ values in the table. The returned slice covers values in all keys
    /// as well as any unassociated values at the end of the table.
    pub fn all_values(&self) -> &[T] {
        &self.values
    }

    /// Returns a mutable slice over _all_ values in the table. The returned slice covers values in
    /// all keys as well as any unassociated values at the end of the table.
    pub fn all_values_mut(&mut self) -> &mut [T] {
        &mut self.values
    }

    /// Iterates pairs of `(key, value)` items. The `key` values are guaranteed to be iterated in
    /// non-decreasing order.
    pub fn iter_pairs(&self) -> impl Iterator<Item = (usize, &'_ T)> {
        self.iter()
            .enumerate()
            .map(move |(i, values)| values.iter().map(move |v| (i, v)))
            .flatten()
    }

    pub fn iter_pairs_manual(&self) -> impl Iterator<Item = (usize, &'_ T)> {
        struct Pairs<'a, T> {
            value_iter: core::slice::Iter<'a, T>,
            index_iter: core::slice::Iter<'a, u32>,
            current_key: usize,
            current_index: usize,
            num_values: usize,
        }
        impl<'a, T> Iterator for Pairs<'a, T> {
            type Item = (usize, &'a T);
            fn next(&mut self) -> Option<Self::Item> {
                if let Some(value) = self.value_iter.next() {
                    // What key is this value for?
                    while self.num_values == 0 {
                        let next_index = *self.index_iter.next().unwrap() as usize;
                        self.num_values = next_index - self.current_index;
                        self.current_index = next_index;
                        self.current_key += 1;
                    }
                    // TODO: current_key is not correct yet
                    self.num_values -= 1;
                    Some((self.current_key, value))
                } else {
                    None
                }
            }
        }

        Pairs {
            value_iter: self.values.iter(),
            index_iter: self.index.iter(),
            current_key: 0,
            current_index: 0,
            num_values: 0,
        }
    }

    /// Returns the total number of values (in all entries) in the table.
    pub fn num_values(&self) -> usize {
        self.values.len()
    }

    /// Pushes a new key-value entry in the table, copying values from a slice.
    /// If the table contained any previously unassociated values, then these
    /// become part of this new entry (and they precede the values passed in
    /// `values`).
    pub fn push_entry_copy(&mut self, values: &[T])
    where
        T: Copy,
    {
        self.values.extend(values.iter());
        self.finish_key();
    }

    /// Pushes a new key-value entry in the table, cloning values from a slice.
    /// If the table contained any previously unassociated values, then these
    /// become part of this new entry (and they precede the values passed in
    /// `values`).
    pub fn push_entry_clone(&mut self, values: &[T])
    where
        T: Clone,
    {
        self.values.extend(values.iter().cloned());
        self.finish_key();
    }

    /// Pushes a new key-value entry in the table, by iterating values.
    /// If the table contained any previously unassociated values, then these
    /// become part of this new entry (and they precede the values passed in
    /// `values`).
    pub fn push_entry_extend<I: Iterator<Item = T>>(&mut self, values: I) {
        self.values.extend(values);
        self.finish_key();
    }
}

impl<T> core::ops::Index<usize> for RampTable<T> {
    type Output = [T];
    fn index(&self, i: usize) -> &[T] {
        self.entry_values(i)
    }
}

impl<T> core::ops::IndexMut<usize> for RampTable<T> {
    fn index_mut(&mut self, i: usize) -> &mut [T] {
        self.entry_values_mut(i)
    }
}

pub struct IterMut<'a, T> {
    last_index: usize,
    index_iter: core::slice::Iter<'a, u32>,
    values: &'a mut [T],
}

impl<'a, T> Iterator for IterMut<'a, T> {
    type Item = &'a mut [T];
    fn next(&mut self) -> Option<Self::Item> {
        if let Some(&index) = self.index_iter.next() {
            let values = std::mem::replace(&mut self.values, &mut []);
            let entry_len = index as usize - self.last_index;
            let (head, tail) = values.split_at_mut(entry_len);
            self.values = tail;
            self.last_index = index as usize;
            Some(head)
        } else {
            None
        }
    }
}

use core::fmt::{Debug, Formatter};
impl<T: Debug> Debug for RampTable<T> {
    fn fmt(&self, fmt: &mut Formatter<'_>) -> core::fmt::Result {
        fmt.debug_map()
            .entries(
                self.iter()
                    .enumerate()
                    .filter(|(_, values)| !values.is_empty()),
            )
            .finish()
    }
}