1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
use super::PhysicalImageId;
use crate::graph::graph_buffer::PhysicalBufferId;
use crate::graph::graph_image::PhysicalImageViewId;
use crate::graph::graph_node::{RenderGraphNodeId, RenderGraphNodeName};
use crate::graph::graph_pass::{PrepassBufferBarrier, PrepassImageBarrier, RenderGraphOutputPass};
use crate::graph::graph_plan::RenderGraphPlan;
use crate::graph::{
    RenderGraphBufferUsageId, RenderGraphBuilder, RenderGraphImageUsageId,
    RenderGraphNodeVisitNodeCallback,
};
use crate::render_features::{
    PreparedRenderData, RenderJobBeginExecuteGraphContext, RenderJobCommandBufferContext,
    RenderJobWriteContext, RenderPhase, RenderView,
};
use crate::resources::DynCommandBuffer;
use crate::{BufferResource, GraphicsPipelineRenderTargetMeta, ImageResource, RenderResources};
use crate::{ImageViewResource, ResourceArc, ResourceContext};
use fnv::FnvHashMap;
use rafx_api::{
    RafxBarrierQueueTransition, RafxBufferBarrier, RafxColorRenderTargetBinding, RafxCommandBuffer,
    RafxCommandBufferDef, RafxCommandPoolDef, RafxDepthStencilRenderTargetBinding,
    RafxDeviceContext, RafxExtents2D, RafxFormat, RafxQueue, RafxResult, RafxSwapchainColorSpace,
    RafxTextureBarrier,
};
use std::hash::Hash;

#[derive(Debug, Clone, PartialEq, Eq, Hash, Default)]
pub struct SwapchainSurfaceInfo {
    pub extents: RafxExtents2D,
    pub format: RafxFormat,
    pub color_space: RafxSwapchainColorSpace,
}

#[derive(Copy, Clone)]
pub struct RenderGraphContext<'graph, 'write> {
    prepared_render_graph: &'graph PreparedRenderGraph,
    prepared_render_data: &'graph PreparedRenderData<'write>,
    render_resources: &'graph RenderResources,
}

impl<'graph, 'write> RenderGraphContext<'graph, 'write> {
    pub fn buffer(
        &self,
        buffer: RenderGraphBufferUsageId,
    ) -> Option<ResourceArc<BufferResource>> {
        self.prepared_render_graph.buffer(buffer)
    }

    pub fn image_view(
        &self,
        image: RenderGraphImageUsageId,
    ) -> Option<ResourceArc<ImageViewResource>> {
        self.prepared_render_graph.image_view(image)
    }

    pub fn device_context(&self) -> &RafxDeviceContext {
        &self.prepared_render_graph.device_context
    }

    pub fn resource_context(&self) -> &ResourceContext {
        &self.prepared_render_graph.resource_context
    }

    pub fn prepared_render_data(&self) -> &PreparedRenderData<'write> {
        &self.prepared_render_data
    }

    pub fn render_resources(&self) -> &RenderResources {
        &self.render_resources
    }
}

pub struct OnBeginExecuteGraphArgs<'graph, 'write> {
    pub command_buffer: DynCommandBuffer,
    pub graph_context: RenderGraphContext<'graph, 'write>,
}

pub struct VisitComputeNodeArgs<'graph, 'write> {
    pub command_buffer: DynCommandBuffer,
    pub graph_context: RenderGraphContext<'graph, 'write>,
}

pub struct VisitRenderpassNodeArgs<'graph, 'write> {
    pub command_buffer: DynCommandBuffer,
    pub render_target_meta: GraphicsPipelineRenderTargetMeta,
    pub graph_context: RenderGraphContext<'graph, 'write>,
}

// Convenience function for creating a write context and triggering writing a phase for a view.
// (Alternatively you can make your own write context, which allows calling write_view_phase
// multiple times with the same context)
impl<'graph, 'write> VisitRenderpassNodeArgs<'graph, 'write> {
    pub fn write_view_phase<PhaseT: RenderPhase>(
        &self,
        render_view: &RenderView,
    ) -> RafxResult<()> {
        let mut write_context =
            RenderJobCommandBufferContext::from_graph_visit_render_pass_args(self);
        self.graph_context
            .prepared_render_data()
            .write_view_phase::<PhaseT>(render_view, &mut write_context)
    }
}

/// Encapsulates a render graph plan and all resources required to execute it
pub struct PreparedRenderGraph {
    device_context: RafxDeviceContext,
    resource_context: ResourceContext,
    buffer_resources: FnvHashMap<PhysicalBufferId, ResourceArc<BufferResource>>,
    image_resources: FnvHashMap<PhysicalImageId, ResourceArc<ImageResource>>,
    image_view_resources: FnvHashMap<PhysicalImageViewId, ResourceArc<ImageViewResource>>,
    graph_plan: RenderGraphPlan,
}

impl PreparedRenderGraph {
    pub fn node_debug_name(
        &self,
        node_id: RenderGraphNodeId,
    ) -> Option<RenderGraphNodeName> {
        let pass_index = *self.graph_plan.node_to_pass_index.get(&node_id)?;
        self.graph_plan.passes[pass_index].debug_name()
    }

    pub fn new(
        device_context: &RafxDeviceContext,
        resource_context: &ResourceContext,
        graph: RenderGraphBuilder,
        swapchain_surface_info: &SwapchainSurfaceInfo,
    ) -> RafxResult<Self> {
        let graph_plan = graph.build_plan(swapchain_surface_info);
        let mut cache_guard = resource_context.render_graph_cache().inner.lock().unwrap();
        let cache = &mut *cache_guard;

        profiling::scope!("allocate resources");
        let buffer_resources =
            cache.allocate_buffers(device_context, &graph_plan, resource_context.resources())?;

        let image_resources = cache.allocate_images(
            device_context,
            &graph_plan,
            resource_context.resources(),
            swapchain_surface_info,
        )?;

        let image_view_resources = cache.allocate_image_views(
            &graph_plan,
            resource_context.resources(),
            &image_resources,
        )?;

        Ok(PreparedRenderGraph {
            device_context: device_context.clone(),
            resource_context: resource_context.clone(),
            buffer_resources,
            image_resources,
            image_view_resources,
            graph_plan,
        })
    }

    pub fn buffer(
        &self,
        buffer: RenderGraphBufferUsageId,
    ) -> Option<ResourceArc<BufferResource>> {
        let physical_buffer = self.graph_plan.buffer_usage_to_physical.get(&buffer)?;
        self.buffer_resources.get(physical_buffer).cloned()
    }

    // pub fn image(
    //     &self,
    //     image_usage: RenderGraphImageUsageId,
    // ) -> Option<ResourceArc<ImageResource>> {
    //     let image = self.graph_plan.image_usage_to_physical.get(&image_usage)?;
    //     self.image_resources.get(image).cloned()
    // }

    pub fn image_view(
        &self,
        image: RenderGraphImageUsageId,
    ) -> Option<ResourceArc<ImageViewResource>> {
        let physical_image = self.graph_plan.image_usage_to_view.get(&image)?;
        self.image_view_resources.get(physical_image).cloned()
    }

    fn insert_barriers(
        &self,
        command_buffer: &RafxCommandBuffer,
        pass_buffer_barriers: &[PrepassBufferBarrier],
        pass_image_barriers: &[PrepassImageBarrier],
    ) -> RafxResult<()> {
        assert!(!pass_buffer_barriers.is_empty() || !pass_image_barriers.is_empty());

        let mut buffer_barriers = Vec::with_capacity(pass_buffer_barriers.len());
        let buffers: Vec<_> = pass_buffer_barriers
            .iter()
            .map(|x| self.buffer_resources[&x.buffer].get_raw().buffer.clone())
            .collect();
        for (buffer_barrier, buffer) in pass_buffer_barriers.iter().zip(&buffers) {
            log::trace!(
                "add buffer barrier for buffer {:?} state {:?} -> {:?}",
                buffer_barrier.buffer,
                buffer_barrier.old_state,
                buffer_barrier.new_state
            );

            buffer_barriers.push(RafxBufferBarrier {
                buffer: buffer.as_ref(),
                src_state: buffer_barrier.old_state,
                dst_state: buffer_barrier.new_state,
                queue_transition: RafxBarrierQueueTransition::None,
                offset_size: None,
            });
        }

        let mut image_barriers = Vec::with_capacity(pass_image_barriers.len());
        let images: Vec<_> = pass_image_barriers
            .iter()
            .map(|x| self.image_resources[&x.image].get_raw().image.clone())
            .collect();
        for (image_barrier, image) in pass_image_barriers.iter().zip(&images) {
            log::trace!(
                "add image barrier for image {:?} state {:?} -> {:?}",
                image_barrier.image,
                image_barrier.old_state,
                image_barrier.new_state
            );

            image_barriers.push(RafxTextureBarrier {
                texture: image,
                src_state: image_barrier.old_state,
                dst_state: image_barrier.new_state,
                array_slice: None,
                mip_slice: None,
                queue_transition: RafxBarrierQueueTransition::None,
            });
        }

        // for buffer_barrier in rafx_buffer_barriers {
        //     println!("{:?}", buffer_barrier);
        // }
        //
        // for rt_barrier in rt_barriers {
        //     println!("{:?}", rt_barrier);
        // }

        command_buffer.cmd_resource_barrier(&buffer_barriers, &image_barriers)
    }

    fn visit_render_node(
        &self,
        node_id: RenderGraphNodeId,
        args: VisitRenderpassNodeArgs,
    ) -> RafxResult<()> {
        if let Some(callback) = self.graph_plan.visit_node_callbacks.get(&node_id) {
            if let RenderGraphNodeVisitNodeCallback::Render(render_callback) = callback {
                (render_callback)(args)?
            } else {
                let debug_name = args
                    .graph_context
                    .prepared_render_graph
                    .node_debug_name(node_id);
                log::error!("Tried to call a render node callback but a simple callback was registered for node {:?} ({:?})", node_id, debug_name);
            }
        } else {
            //let debug_name = args.graph_context.prepared_render_graph.node_debug_name(node_id);
            //log::error!("No callback found for node {:?} ({:?})", node_id, debug_name);
        }

        Ok(())
    }

    fn visit_callback_node(
        &self,
        node_id: RenderGraphNodeId,
        args: VisitComputeNodeArgs,
    ) -> RafxResult<()> {
        if let Some(callback) = self.graph_plan.visit_node_callbacks.get(&node_id) {
            if let RenderGraphNodeVisitNodeCallback::Callback(callback) = callback {
                (callback)(args)?
            } else {
                let debug_name = args
                    .graph_context
                    .prepared_render_graph
                    .node_debug_name(node_id);
                log::error!("Tried to call a simple callback node callback but a render node callback was registered for node {:?} ({:?})", node_id, debug_name);
            }
        } else {
            //let debug_name = args.graph_context.prepared_render_graph.node_debug_name(node_id);
            //log::error!("No callback found for node {:?} {:?}", node_id, debug_name);
        }

        Ok(())
    }

    pub fn execute_graph<'write>(
        &'write self,
        write_context: &RenderJobWriteContext,
        prepared_render_data: PreparedRenderData<'write>,
        queue: &RafxQueue,
    ) -> RafxResult<Vec<DynCommandBuffer>> {
        profiling::scope!("Execute Graph");
        //
        // Start a command writer. For now just do a single primary writer, later we can multithread this.
        //
        let mut command_writer = self
            .resource_context
            .create_dyn_command_pool_allocator()
            .allocate_dyn_pool(queue, &RafxCommandPoolDef { transient: true }, 0)?;

        let command_buffer = command_writer.allocate_dyn_command_buffer(&RafxCommandBufferDef {
            is_secondary: false,
        })?;

        command_buffer.begin()?;

        let render_graph_context = RenderGraphContext {
            prepared_render_graph: &self,
            prepared_render_data: &prepared_render_data,
            render_resources: write_context.render_resources,
        };

        render_graph_context
            .prepared_render_data()
            .on_begin_execute_graph(
                &mut RenderJobBeginExecuteGraphContext::from_on_begin_execute_graph_args(
                    &OnBeginExecuteGraphArgs {
                        graph_context: render_graph_context.clone(),
                        command_buffer: command_buffer.clone(),
                    },
                ),
            )?;

        //
        // Iterate through all passes
        //
        for (pass_index, pass) in self.graph_plan.passes.iter().enumerate() {
            //TODO output pass is?
            //TODO: add_compute_node/add_render_node?

            profiling::scope!("pass", pass.debug_name().unwrap_or("unnamed"));
            log::trace!("Execute pass name: {:?}", pass.debug_name());

            if let Some(name) = pass.debug_name() {
                command_buffer.cmd_push_group_debug_name(name);
            }

            let node_id = pass.node();

            if let Some(pre_pass_barrier) = pass.pre_pass_barrier() {
                log::trace!(
                    "prepass barriers for pass {} {:?}",
                    pass_index,
                    pass.debug_name()
                );
                self.insert_barriers(
                    &command_buffer,
                    &pre_pass_barrier.buffer_barriers,
                    &pre_pass_barrier.image_barriers,
                )?;
            }

            match pass {
                RenderGraphOutputPass::Render(pass) => {
                    let color_images: Vec<_> = pass
                        .color_render_targets
                        .iter()
                        .map(|x| self.image_resources[&x.image].get_raw().image.clone())
                        .collect();

                    let resolve_images: Vec<_> = pass
                        .color_render_targets
                        .iter()
                        .map(|x| {
                            //x.map(|x| self.image_resources[&x.image].get_raw().image.clone())
                            x.resolve_image
                                .map(|x| self.image_resources[&x].get_raw().image.clone())
                        })
                        .collect();

                    let color_target_bindings: Vec<_> = pass
                        .color_render_targets
                        .iter()
                        .enumerate()
                        .map(
                            |(color_image_index, color_image)| RafxColorRenderTargetBinding {
                                texture: &color_images[color_image_index],
                                clear_value: color_image.clear_value.clone(),
                                load_op: color_image.load_op,
                                store_op: color_image.store_op,
                                array_slice: color_image.array_slice,
                                mip_slice: color_image.mip_slice,
                                resolve_target: resolve_images[color_image_index].as_ref(),
                                resolve_store_op: color_image.resolve_store_op.into(),
                                resolve_array_slice: color_image.resolve_array_slice,
                                resolve_mip_slice: color_image.resolve_mip_slice,
                            },
                        )
                        .collect();

                    let mut depth_stencil_image = None;
                    let depth_target_binding = pass.depth_stencil_render_target.as_ref().map(|x| {
                        depth_stencil_image =
                            Some(self.image_resources[&x.image].get_raw().image.clone());
                        RafxDepthStencilRenderTargetBinding {
                            texture: depth_stencil_image.as_ref().unwrap(),
                            clear_value: x.clear_value.clone(),
                            depth_load_op: x.depth_load_op,
                            stencil_load_op: x.stencil_load_op,
                            depth_store_op: x.depth_store_op,
                            stencil_store_op: x.stencil_store_op,
                            array_slice: x.array_slice,
                            mip_slice: x.mip_slice,
                        }
                    });

                    //println!("color bindings:\n{:#?}", color_target_bindings);
                    //println!("depth binding:\n{:#?}", depth_target_binding);

                    command_buffer
                        .cmd_begin_render_pass(&color_target_bindings, depth_target_binding)?;

                    let args = VisitRenderpassNodeArgs {
                        render_target_meta: pass.render_target_meta.clone(),
                        graph_context: render_graph_context,
                        command_buffer: command_buffer.clone(),
                    };

                    self.visit_render_node(node_id, args)?;

                    command_buffer.cmd_end_render_pass()?;
                }
                RenderGraphOutputPass::Callback(_pass) => {
                    let args = VisitComputeNodeArgs {
                        graph_context: render_graph_context,
                        command_buffer: command_buffer.clone(),
                    };

                    self.visit_callback_node(node_id, args)?;
                }
            }

            if pass.debug_name().is_some() {
                command_buffer.cmd_pop_group_debug_name();
            }
        }

        command_buffer.end()?;

        Ok(vec![command_buffer])
    }
}