1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
//! Sample-rate conversion

use crate::bufferpool::*;
use crate::flow::*;
use crate::impl_block_trait;
use crate::math::*;
use crate::numbers::*;
use crate::signal::*;
use crate::windowing::{self, Window};

use tokio::task::spawn;

/// Reduce sample rate
pub struct Downsampler<Flt> {
    receiver_connector: ReceiverConnector<Signal<Complex<Flt>>>,
    sender_connector: SenderConnector<Signal<Complex<Flt>>>,
}

impl_block_trait! { <Flt> Consumer<Signal<Complex<Flt>>> for Downsampler<Flt> }
impl_block_trait! { <Flt> Producer<Signal<Complex<Flt>>> for Downsampler<Flt> }

impl<Flt> Downsampler<Flt>
where
    Flt: Float,
{
    /// Create new `Downsampler` block
    ///
    /// This call corresponds to [`Downsampler::with_quality`] with a `quality`
    /// value of `3.0`.
    ///
    /// Connected [`Producer`]s must emit [`Signal::Samples`] with a
    /// [`sample_rate`] equal to or higher than `output_rate`; otherwise a
    /// panic occurs.
    ///
    /// Aliasing is suppressed for frequencies lower than `bandwidth`.
    ///
    /// [`sample_rate`]: Signal::Samples::sample_rate
    pub fn new(output_chunk_len: usize, output_rate: f64, bandwidth: f64) -> Self {
        Self::with_quality(output_chunk_len, output_rate, bandwidth, 3.0)
    }
    /// Create new `Downsampler` block with `quality` setting
    ///
    /// Same as [`Downsampler::new`], but allows to specify a `quality`
    /// setting, which must be equal to or greater than `1.0`.
    pub fn with_quality(
        output_chunk_len: usize,
        output_rate: f64,
        bandwidth: f64,
        quality: f64,
    ) -> Self {
        assert!(output_rate >= 0.0, "output sample rate must be positive");
        assert!(bandwidth >= 0.0, "bandwidth must be positive");
        assert!(
            bandwidth < output_rate,
            "bandwidth must be smaller than output sample rate"
        );
        let (mut receiver, receiver_connector) = new_receiver::<Signal<Complex<Flt>>>();
        let (sender, sender_connector) = new_sender::<Signal<Complex<Flt>>>();
        let mut buf_pool = ChunkBufPool::<Complex<Flt>>::new();
        let mut output_chunk = buf_pool.get_with_capacity(output_chunk_len);
        spawn(async move {
            let margin = (output_rate - bandwidth) / 2.0;
            let mut prev_input_rate: Option<f64> = None;
            let mut ir: Vec<Flt> = Default::default();
            let mut ringbuf: Vec<Complex<Flt>> = Default::default();
            let mut ringbuf_pos: usize = Default::default();
            let mut pos: f64 = Default::default();
            loop {
                let Ok(signal) = receiver.recv().await else { return; };
                match signal {
                    Signal::Samples {
                        sample_rate: input_rate,
                        chunk: input_chunk,
                    } => {
                        if Some(input_rate) != prev_input_rate {
                            prev_input_rate = Some(input_rate);
                            assert!(input_rate >= 0.0, "input sample rate must be positive");
                            assert!(
                                input_rate >= output_rate,
                                "input sample rate must be greater than or equal to output sample rate"
                            );
                            let ir_len: usize = (input_rate / margin * quality).ceil() as usize;
                            assert!(ir_len > 0);
                            let ir_len_flt = ir_len as f64;
                            let window = windowing::Kaiser::with_null_at_bin(
                                ir_len_flt * margin / input_rate,
                            );
                            let mut ir_buf: Vec<f64> = Vec::with_capacity(ir_len);
                            let mut energy = 0.0;
                            for i in 0..ir_len {
                                let x = (i as f64 + 0.5) - ir_len_flt / 2.0;
                                let y = sinc(x * output_rate / input_rate)
                                    * window.relative_value_at(x * 2.0 / ir_len_flt);
                                ir_buf.push(y);
                                energy += y * y;
                            }
                            let scale = energy.sqrt().recip();
                            ir = ir_buf.into_iter().map(|y| flt!(y * scale)).collect();
                            ringbuf = vec![Complex::from(Flt::zero()); ir_len];
                            ringbuf_pos = 0;
                            pos = 0.0;
                        }
                        for &sample in input_chunk.iter() {
                            ringbuf[ringbuf_pos] = sample;
                            ringbuf_pos += 1;
                            if ringbuf_pos == ir.len() {
                                ringbuf_pos = 0;
                            }
                            pos += output_rate;
                            if pos >= input_rate {
                                pos -= input_rate;
                                let mut sum: Complex<Flt> = Complex::from(Flt::zero());
                                let mut ir_iter = ir.iter();
                                let mut next_ir = || *ir_iter.next().unwrap();
                                for i in ringbuf_pos..ir.len() {
                                    sum += ringbuf[i] * next_ir();
                                }
                                for i in 0..ringbuf_pos {
                                    sum += ringbuf[i] * next_ir();
                                }
                                output_chunk.push(sum);
                                if output_chunk.len() >= output_chunk_len {
                                    let Ok(()) = sender
                                        .send(Signal::Samples {
                                            sample_rate: output_rate,
                                            chunk: output_chunk.finalize(),
                                        })
                                        .await
                                    else { return; };
                                    output_chunk = buf_pool.get_with_capacity(output_chunk_len);
                                }
                            }
                        }
                    }
                    event @ Signal::Event { .. } => {
                        let Ok(()) = sender.send(event).await else { return; };
                    }
                }
            }
        });
        Self {
            receiver_connector,
            sender_connector,
        }
    }
}

/// Increase sample rate
pub struct Upsampler<Flt> {
    receiver_connector: ReceiverConnector<Signal<Complex<Flt>>>,
    sender_connector: SenderConnector<Signal<Complex<Flt>>>,
}

impl_block_trait! { <Flt> Consumer<Signal<Complex<Flt>>> for Upsampler<Flt> }
impl_block_trait! { <Flt> Producer<Signal<Complex<Flt>>> for Upsampler<Flt> }

impl<Flt> Upsampler<Flt>
where
    Flt: Float,
{
    /// Create new `Upsampler` block
    ///
    /// This call corresponds to [`Upsampler::with_quality`] with a `quality`
    /// value of `3.0`.
    ///
    /// Connected [`Producer`]s must emit [`Signal::Samples`] with a
    /// [`sample_rate`] equal to or smaller than `output_rate` but larger than
    /// `bandwidth`; otherwise a panic occurs.
    ///
    /// Aliasing is suppressed for frequencies lower than `bandwidth`.
    ///
    /// [`sample_rate`]: Signal::Samples::sample_rate
    pub fn new(output_chunk_len: usize, output_rate: f64, bandwidth: f64) -> Self {
        Self::with_quality(output_chunk_len, output_rate, bandwidth, 3.0)
    }
    /// Create new `Upsampler` block with `quality` setting
    ///
    /// Same as [`Upsampler::new`], but allows to specify a `quality` setting,
    /// which must be equal to or greater than `1.0`.
    pub fn with_quality(
        output_chunk_len: usize,
        output_rate: f64,
        bandwidth: f64,
        quality: f64,
    ) -> Self {
        assert!(output_rate >= 0.0, "output sample rate must be positive");
        assert!(bandwidth >= 0.0, "bandwidth must be positive");
        let (mut receiver, receiver_connector) = new_receiver::<Signal<Complex<Flt>>>();
        let (sender, sender_connector) = new_sender::<Signal<Complex<Flt>>>();
        let mut buf_pool = ChunkBufPool::<Complex<Flt>>::new();
        let mut output_chunk = buf_pool.get_with_capacity(output_chunk_len);
        spawn(async move {
            let mut prev_input_rate: Option<f64> = None;
            let mut ir: Vec<Flt> = Default::default();
            let mut ringbuf: Vec<Complex<Flt>> = Default::default();
            let mut ringbuf_pos: usize = Default::default();
            let mut pos: f64 = Default::default();
            loop {
                let Ok(signal) = receiver.recv().await else { return; };
                match signal {
                    Signal::Samples {
                        sample_rate: input_rate,
                        chunk: input_chunk,
                    } => {
                        if Some(input_rate) != prev_input_rate {
                            prev_input_rate = Some(input_rate);
                            assert!(input_rate >= 0.0, "input sample rate must be positive");
                            assert!(
                                input_rate <= output_rate,
                                "input sample rate must be smaller than or equal to output sample rate"
                            );
                            assert!(
                                bandwidth < input_rate,
                                "bandwidth must be smaller than input sample rate"
                            );
                            let margin = (input_rate - bandwidth) / 2.0;
                            let ir_len: usize = (output_rate / margin * quality).ceil() as usize;
                            assert!(ir_len > 0);
                            let ir_len_flt = ir_len as f64;
                            let window = windowing::Kaiser::with_null_at_bin(
                                ir_len_flt * margin / output_rate,
                            );
                            let mut ir_buf: Vec<f64> = Vec::with_capacity(ir_len);
                            let mut energy = 0.0;
                            for i in 0..ir_len {
                                let x = (i as f64 + 0.5) - ir_len_flt / 2.0;
                                let y = sinc(x * input_rate / output_rate)
                                    * window.relative_value_at(x * 2.0 / ir_len_flt);
                                ir_buf.push(y);
                                energy += y * y;
                            }
                            let scale = energy.sqrt().recip();
                            ir = ir_buf.into_iter().map(|y| flt!(y * scale)).collect();
                            ringbuf = vec![Complex::from(Flt::zero()); ir_len];
                            ringbuf_pos = 0;
                            pos = 0.0;
                        }
                        for &sample in input_chunk.iter() {
                            let mut ir_iter = ir.iter();
                            let mut next_ir = || *ir_iter.next().unwrap();
                            for i in ringbuf_pos..ir.len() {
                                ringbuf[i] += sample * next_ir();
                            }
                            for i in 0..ringbuf_pos {
                                ringbuf[i] += sample * next_ir();
                            }
                            while pos < output_rate {
                                output_chunk.push(ringbuf[ringbuf_pos]);
                                ringbuf[ringbuf_pos] = Complex::from(Flt::zero());
                                if output_chunk.len() >= output_chunk_len {
                                    let Ok(()) = sender
                                        .send(Signal::Samples {
                                            sample_rate: output_rate,
                                            chunk: output_chunk.finalize(),
                                        })
                                        .await
                                    else { return; };
                                    output_chunk = buf_pool.get_with_capacity(output_chunk_len);
                                }
                                ringbuf_pos += 1;
                                if ringbuf_pos >= ir.len() {
                                    ringbuf_pos = 0;
                                }
                                pos += input_rate;
                            }
                            pos -= output_rate;
                        }
                    }
                    event @ Signal::Event { .. } => {
                        let Ok(()) = sender.send(event).await else { return; };
                    }
                }
            }
        });
        Upsampler {
            receiver_connector,
            sender_connector,
        }
    }
}

#[cfg(test)]
mod tests {}