1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
//! Data flow between [blocks]
//!
//! Signal processing blocks implement the [`Producer`] trait, the [`Consumer`]
//! trait, or both traits.
//!
//! Upon creation, `Producer`s use the [`new_sender`] function to create a pair
//! consisting of a [`Sender`] and a [`SenderConnector`]. The `Sender` is
//! passed to a background task while the `SenderConnector` is stored and
//! accessible through the [`Producer::sender_connector`] method.
//!
//! `Consumers` use the [`new_receiver`] function upon creation to create a
//! pair of a [`Receiver`] and a [`ReceiverConnector`]. The `Receiver` is
//! passed to a background task while the `ReceiverConnector` is stored and
//! accessible through the [`Consumer::receiver_connector`] method.
//!
//! Note that feeding data into multiple `Consumer`s/`Receiver`s will block if
//! one of the `Consumer`s blocks; i.e. all `Consumer`s/`Receiver`s must have
//! received the data before more can be sent by the `Producer`/`Sender`.
//!
//! For each [`Sender`], there is a buffer capacity of `1` (see underlying
//! [`broadcast_bp`] channel). Thus a chain of [blocks] may accumulate a
//! significant buffer volume. This may be unwanted and can be handled by
//! placing a [`blocks::buffering::Buffer`] block near the end of the chain.
//!
//! [blocks]: crate::blocks
//! [`blocks::buffering::Buffer`]: crate::blocks::buffering::Buffer
//!
//! # Example
//!
//! The following toy example passes a `String` from a [`Producer`] to a
//! [`Consumer`]. For radio applications, you will usually pass [`Samples`]
//! instead.
//!
//! [`Samples`]: crate::samples::Samples
//!
//! ```
//! # tokio::runtime::Runtime::new().unwrap().block_on(async move {
//! use radiorust::flow::*;
//! use tokio::sync::oneshot;
//! use tokio::task::spawn;
//!
//! struct MySource {
//!     sender_connector: SenderConnector<String>,
//!     /* extra fields can go here */
//! }
//! impl MySource {
//!     fn new() -> Self {
//!         let (sender, sender_connector) = new_sender::<String>();
//!         spawn(async move {
//!             sender.send("Hello World!".to_string()).await;
//!         });
//!         Self { sender_connector }
//!     }
//! }
//! impl Producer<String> for MySource {
//!     fn sender_connector(&self) -> &SenderConnector<String> {
//!         &self.sender_connector
//!     }
//! }
//!
//! struct MySink {
//!     receiver_connector: ReceiverConnector<String>,
//!     finish: oneshot::Receiver<()>,
//!     /* extra fields can go here */
//! }
//! impl MySink {
//!     fn new() -> Self {
//!         let (mut receiver, receiver_connector) = new_receiver::<String>();
//!         let (finish_send, finish_recv) = oneshot::channel::<()>();
//!         spawn(async move {
//!             assert_eq!(receiver.recv().await.unwrap(), "Hello World!".to_string());
//!             finish_send.send(());
//!         });
//!         Self { receiver_connector, finish: finish_recv }
//!     }
//!     async fn wait(self) {
//!         self.finish.await.unwrap();
//!     }
//! }
//! impl Consumer<String> for MySink {
//!     fn receiver_connector(&self) -> &ReceiverConnector<String> {
//!         &self.receiver_connector
//!     }
//! }
//!
//! let source = MySource::new();
//! let sink = MySink::new();
//! sink.feed_from(&source);
//!
//! sink.wait().await;
//! # });
//! ```
//!
//! [blocks]: crate::blocks

use crate::sync::broadcast_bp;

use tokio::select;
use tokio::sync::watch;

use std::error::Error;
use std::fmt;
use std::future::pending;

pub use broadcast_bp::{RsrvError, SendError};

#[derive(Clone, Debug)]
enum Message<T> {
    Value(T),
    Reset,
    Finished,
}

/// Error value returned by [`Receiver::recv`]
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum RecvError {
    /// Some values may have been lost or the data stream is interrupted;
    /// more/new data may be received in the future.
    Reset,
    /// The data stream has been completed; more/new data may be received in
    /// the future. This error is also used by blocks which have no data to
    /// send yet, prior to sending silence.
    Finished,
    /// No more data can be received and the [`ReceiverConnector`] has been
    /// dropped.
    Closed,
}

impl fmt::Display for RecvError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            RecvError::Reset => write!(f, "data stream interrupted"),
            RecvError::Finished => write!(f, "data stream completed"),
            RecvError::Closed => write!(f, "data stream closed"),
        }
    }
}

impl Error for RecvError {}

/// Sender that can be dynamically connected to a [`Receiver`]
///
/// To send data to the connected `Receiver`s, use [`Sender::send`]. Call
/// [`Sender::reset`] to indicate missing data and [`Sender::finish`] to
/// indicate end of stream.
///
/// Connecting the `Sender` to a `Receiver` is done by passing a
/// [`SenderConnector`] reference to [`ReceiverConnector::connect`].
/// The `SenderConnector` is obtained when calling [`new_sender`].
///
/// There is buffer capacity of `1` for each `Sender`, i.e. `Sender::send`
/// completes immediately for the first value sent or after all `Receiver`s
/// have received the previous value.
/// (Note: In some cases, `Sender::send` may wait until receiving is attempted
/// by one `Receiver`. This is because the [`broadcast_bp::Sender`] might not
/// see a [`broadcast_bp::Receiver`] as subscriber yet.)
#[derive(Debug)]
pub struct Sender<T> {
    inner_sender: broadcast_bp::Sender<Message<T>>,
}

impl<T> Clone for Sender<T> {
    fn clone(&self) -> Self {
        Self {
            inner_sender: self.inner_sender.clone(),
        }
    }
}

/// Guarantee to send one value from [`Sender`] to [`Receiver`]s immediately
#[derive(Debug)]
pub struct Reservation<'a, T> {
    inner_reservation: broadcast_bp::Reservation<'a, Message<T>>,
}

/// Handle to connect a [`Sender`] to a [`Receiver`]
///
/// A `SenderConnector` can be obtained by calling [`new_sender`].
/// A reference to a `SenderConnector` can be passed to
/// [`ReceiverConnector::connect`] to connect the associated `Sender` to the
/// associated `Receiver`.
#[derive(Debug)]
pub struct SenderConnector<T> {
    inner_enlister: broadcast_bp::Enlister<Message<T>>,
}

impl<T> Clone for SenderConnector<T> {
    fn clone(&self) -> Self {
        Self {
            inner_enlister: self.inner_enlister.clone(),
        }
    }
}

/// Create a [`Sender`] with an associated [`SenderConnector`]
pub fn new_sender<T>() -> (Sender<T>, SenderConnector<T>) {
    let (inner_sender, inner_enlister) = broadcast_bp::channel();
    (Sender { inner_sender }, SenderConnector { inner_enlister })
}

impl<T> Sender<T> {
    /// Wait until ready to send
    ///
    /// The returned [`Reservation`] handle may be used to send a value
    /// immediately (through [`Reservation::send`], which is not `async`).
    pub async fn reserve(&self) -> Result<Reservation<'_, T>, RsrvError> {
        Ok(Reservation {
            inner_reservation: self.inner_sender.reserve().await?,
        })
    }
    /// Check if ready to send
    ///
    /// The returned [`Reservation`] handle may be used to send a value
    /// immediately (through [`Reservation::send`], which is not `async`).
    ///
    /// This method returns `Ok(None)` if it's not possible to send a value
    /// immediately.
    pub fn try_reserve(&self) -> Result<Option<Reservation<'_, T>>, RsrvError> {
        Ok(self
            .inner_sender
            .try_reserve()?
            .map(|inner_reservation| Reservation { inner_reservation }))
    }
    /// Send data to all [`Receiver`]s which have been [connected]
    ///
    /// [connected]: ReceiverConnector::connect
    pub async fn send(&self, value: T) -> Result<(), SendError<T>> {
        match self.reserve().await {
            Ok(reservation) => {
                reservation.send(value);
                Ok(())
            }
            Err(RsrvError) => Err(SendError(value)),
        }
    }
    /// Notify all [`Receiver`]s that some data is missing or that the data
    /// stream has been restarted
    pub async fn reset(&self) -> Result<(), SendError<()>> {
        match self.reserve().await {
            Ok(reservation) => {
                reservation.reset();
                Ok(())
            }
            Err(RsrvError) => Err(SendError(())),
        }
    }
    /// Notify all [`Receiver`]s that the data stream has been completed
    pub async fn finish(&self) -> Result<(), SendError<()>> {
        match self.reserve().await {
            Ok(reservation) => {
                reservation.finish();
                Ok(())
            }
            Err(RsrvError) => Err(SendError(())),
        }
    }
    /// Propagate a [`RecvError`] to all [`Receiver`]s
    ///
    /// [`RecvError::Closed`] is mapped to [`RecvError::Reset`] because a
    /// `Receiver` may be reconnected with another [`Sender`] later.
    pub async fn forward_error(&self, error: RecvError) -> Result<(), SendError<()>> {
        match self.reserve().await {
            Ok(reservation) => {
                reservation.forward_error(error);
                Ok(())
            }
            Err(RsrvError) => Err(SendError(())),
        }
    }
}

impl<T> Reservation<'_, T> {
    /// Send data to all [`Receiver`]s which have been [connected]
    ///
    /// [connected]: ReceiverConnector::connect
    pub fn send(self, value: T) {
        self.inner_reservation.send(Message::Value(value));
    }
    /// Notify all [`Receiver`]s that some data is missing or that the data
    /// stream has been restarted
    pub fn reset(self) {
        self.inner_reservation.send(Message::Reset);
    }
    /// Notify all [`Receiver`]s that the data stream has been completed
    pub fn finish(self) {
        self.inner_reservation.send(Message::Finished)
    }
    /// Propagate a [`RecvError`] to all [`Receiver`]s
    ///
    /// [`RecvError::Closed`] is mapped to [`RecvError::Reset`] because a
    /// `Receiver` may be reconnected with another [`Sender`] later.
    pub fn forward_error(self, error: RecvError) {
        self.inner_reservation.send(match error {
            RecvError::Reset => Message::Reset,
            RecvError::Finished => Message::Finished,
            RecvError::Closed => Message::Reset,
        })
    }
}

/// Handle to connect a [`Receiver`] to a [`Sender`]
///
/// A `ReceiverConnector` is either obtained when calling [`new_receiver`] or
/// by calling [`ReceiverConnector::new`].
///
/// Connecting a `Receiver` to a `Sender` is done by passing a
/// [`SenderConnector`] reference to [`ReceiverConnector::connect`].
/// The `SenderConnector` is obtained when calling [`new_sender`].
#[derive(Debug)]
pub struct ReceiverConnector<T> {
    enlister_tx: watch::Sender<Option<broadcast_bp::Enlister<Message<T>>>>,
}

/// Receiver that can be dynamically connected to a [`Sender`]
///
/// A `Receiver` is either obtained through [`new_receiver`] or by calling
/// [`ReceiverConnector::stream`].
///
/// Receiving data is done by calling [`Receiver::recv`].
///
/// Connecting a `Receiver` to a `Sender` is done by passing a
/// [`SenderConnector`] reference to [`ReceiverConnector::connect`].
/// The `SenderConnector` is obtained when calling [`new_sender`].
#[derive(Debug)]
pub struct Receiver<T> {
    enlister_rx: watch::Receiver<Option<broadcast_bp::Enlister<Message<T>>>>,
    inner_receiver: Option<broadcast_bp::Receiver<Message<T>>>,
    continuity: bool,
}

impl<T> Clone for Receiver<T> {
    fn clone(&self) -> Self {
        Self {
            enlister_rx: self.enlister_rx.clone(),
            inner_receiver: self.inner_receiver.clone(),
            continuity: self.continuity,
        }
    }
}

/// Create a [`Receiver`] with an associated [`ReceiverConnector`]
///
/// Alternatively, you can use [`ReceiverConnector::new`] and
/// [`ReceiverConnector::stream`].
pub fn new_receiver<T>() -> (Receiver<T>, ReceiverConnector<T>) {
    let receiver_connector = ReceiverConnector::new();
    let receiver = receiver_connector.stream();
    (receiver, receiver_connector)
}

impl<T> ReceiverConnector<T> {
    /// Create a new `ReceiverConnector` without associated [`Receiver`]s
    pub fn new() -> Self {
        Self {
            enlister_tx: watch::channel(None).0,
        }
    }
    /// Connect associated [`Receiver`]s with a [`Sender`]
    pub fn connect(&self, connector: &SenderConnector<T>) {
        self.enlister_tx
            .send_replace(Some(connector.inner_enlister.clone()));
    }
    /// Disconnect associated [`Receiver`]s from [`Sender`] if connected
    pub fn disconnect(&self) {
        self.enlister_tx.send_replace(None);
    }
    /// Obtain an associated [`Receiver`]
    pub fn stream(&self) -> Receiver<T> {
        let mut enlister_rx = self.enlister_tx.subscribe();
        let inner_receiver = enlister_rx
            .borrow_and_update()
            .as_ref()
            .map(|x| x.subscribe());
        Receiver {
            enlister_rx,
            inner_receiver,
            continuity: false,
        }
    }
}

impl<T> Receiver<T>
where
    T: Clone,
{
    /// Receive data from connected [`Sender`]
    pub async fn recv(&mut self) -> Result<T, RecvError> {
        let change = |this: &mut Self| {
            let was_connected = this.inner_receiver.is_some();
            this.inner_receiver = this
                .enlister_rx
                .borrow_and_update()
                .as_ref()
                .map(|x| x.subscribe());
            if was_connected && this.continuity {
                this.continuity = false;
                Err(RecvError::Reset)
            } else {
                Ok(())
            }
        };
        let mut unchangeable = false;
        loop {
            if let Some(inner_receiver) = self.inner_receiver.as_mut() {
                select! {
                    result = async {
                        if unchangeable {
                            pending::<()>().await;
                        }
                        self.enlister_rx.changed().await
                    } => {
                        match result {
                            Ok(()) => change(self)?,
                            Err(_) => unchangeable = true,
                        }
                    }
                    result = inner_receiver.recv() => {
                        match result {
                            Ok(Message::Value(value)) => {
                                self.continuity = true;
                                return Ok(value);
                            }
                            Ok(Message::Reset) => {
                                self.continuity = false;
                                return Err(RecvError::Reset);
                            }
                            Ok(Message::Finished) => {
                                self.continuity = false;
                                return Err(RecvError::Finished);
                            }
                            Err(_) => self.inner_receiver = None,
                        }
                    }
                }
            } else {
                match self.enlister_rx.changed().await {
                    Ok(()) => change(self)?,
                    Err(_) => {
                        if self.continuity {
                            self.continuity = false;
                            return Err(RecvError::Reset);
                        } else {
                            return Err(RecvError::Closed);
                        }
                    }
                }
            }
        }
    }
}

/// Type which contains a [`SenderConnector`] and can be connected to a
/// [`Consumer`]
///
/// This trait is implemented for `SenderConnector` but may also be implemented
/// for structs which contain a `SenderConnector`.
pub trait Producer<T> {
    /// Obtain reference to [`SenderConnector`]
    fn sender_connector(&self) -> &SenderConnector<T>;
    /// Connect `Producer` to [`Consumer`]
    fn feed_into<C: Consumer<T>>(&self, consumer: &C) {
        consumer
            .receiver_connector()
            .connect(self.sender_connector());
    }
    /// Connect `Producer` to [`Consumer`]
    #[deprecated(since = "0.2.0", note = "method has been renamed to `feed_into`")]
    fn connect_to_consumer<C: Consumer<T>>(&self, consumer: &C) {
        self.feed_into(consumer)
    }
}

impl<T> Producer<T> for SenderConnector<T> {
    fn sender_connector(&self) -> &SenderConnector<T> {
        self
    }
}

/// Type which contains a [`ReceiverConnector`] and can be connected to a
/// [`Producer`]
///
/// This trait is implemented for `ReceiverConnector` but may also be
/// implemented for structs which contain a `ReceiverConnector`.
pub trait Consumer<T> {
    /// Obtain reference to [`ReceiverConnector`]
    fn receiver_connector(&self) -> &ReceiverConnector<T>;
    /// Connect `Consumer` to [`Producer`]
    fn feed_from<P: Producer<T>>(&self, producer: &P) {
        self.receiver_connector()
            .connect(producer.sender_connector());
    }
    /// Disconnect `Consumer` from any connected [`Producer`] if connected
    fn feed_from_none(&self) {
        self.receiver_connector().disconnect();
    }
    /// Connect `Consumer` to [`Producer`]
    #[deprecated(since = "0.2.0", note = "method has been renamed to `feed_from`")]
    fn connect_to_producer<P: Producer<T>>(&self, producer: &P) {
        self.feed_from(producer)
    }
    /// Disconnect `Consumer` from any connected [`Producer`] if connected
    #[deprecated(since = "0.2.0", note = "method has been renamed to `feed_from_none`")]
    fn disconnect_from_producer(&self) {
        self.feed_from_none()
    }
}

impl<T> Consumer<T> for ReceiverConnector<T> {
    fn receiver_connector(&self) -> &ReceiverConnector<T> {
        self
    }
}