1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
//! Metering (e.g. level or bandwidth measurement)

use crate::flt;
use crate::numbers::*;
use crate::samples::*;

/// Calculate mean square norm
///
/// # Example
///
/// ```
/// use radiorust::metering::level;
/// use radiorust::numbers::Complex;
///
/// let chunk = vec![
///     Complex::new(0.0, 0.0),
///     Complex::new(0.0, -0.5),
///     Complex::new(1.0, 0.0),
/// ];
///
/// assert!(level(&chunk) - 0.41666667 < 0.001);
/// ```
pub fn level<Flt>(chunk: &[Complex<Flt>]) -> f64
where
    Flt: Float,
{
    let mut square_average: f64 = 0.0;
    for sample in chunk.iter() {
        square_average += sample.norm_sqr().to_f64().unwrap();
    }
    square_average / chunk.len() as f64
}

/// Calculate bandwidth in hertz from fourier transformed samples
///
/// Note: The [`Samples`] must be already in Fourier transformed form,
/// e.g. by using [`blocks::analysis::Fourier`].
///
/// The `double_percentile` parameter determines how much energy is allowed to
/// be outside the measured bandwidth (a useful value may be `0.01`).
///
/// [`blocks::analysis::Fourier`]: crate::blocks::analysis::Fourier
pub fn bandwidth<Flt>(double_percentile: f64, fourier: &Samples<Complex<Flt>>) -> f64
where
    Flt: Float,
{
    fn norm_sqr<Flt: Float>(x: &Complex<Flt>) -> f64 {
        x.norm_sqr().to_f64().unwrap()
    }
    fn discount_bins<I: Iterator<Item = usize>, Flt: Float>(
        bins: &[Complex<Flt>],
        energy_limit: f64,
        idcs: I,
    ) -> f64 {
        let mut old_energy: f64 = 0.0;
        let mut used_bins: f64 = 0.0;
        for idx in idcs {
            let new_energy: f64 = old_energy + norm_sqr(&bins[idx]);
            if new_energy > energy_limit {
                used_bins += (energy_limit - old_energy) / (new_energy - old_energy);
                break;
            }
            used_bins += 1.0;
            old_energy = new_energy;
        }
        used_bins
    }
    let &Samples {
        sample_rate,
        chunk: ref bins,
    } = fourier;
    let n: usize = bins.len();
    let total_energy: f64 = bins.iter().map(norm_sqr).sum();
    let energy_limit: f64 = total_energy * double_percentile / 2.0;
    let wrap_idx = n.checked_add(1).unwrap() / 2;
    let idcs = (wrap_idx..n).chain(0..wrap_idx);
    let mut used_bins = 0.0;
    used_bins += discount_bins(bins, energy_limit, idcs.clone());
    used_bins += discount_bins(bins, energy_limit, idcs.rev());
    let bw = (n as f64 - used_bins) * sample_rate as f64 / n as f64;
    if bw > 0.0 {
        bw
    } else {
        0.0
    }
}

/// Converts a slice of complex numbers (e.g. a Fourier transformed chunk) into
/// a given count (`resolution`) of real numbers reflecting the energy
///
/// Note that this function expects there to be no wraparound in the middle of
/// the input, e.g. the output of a Fourier transform should be shifted such
/// that the center frequency is in the middle of `input` before this function
/// is called.
pub fn rescale_energy<Flt>(output: &mut Vec<Flt>, resolution: usize, input: &[Complex<Flt>])
where
    Flt: Float,
{
    let n: usize = input.len();
    assert!(n > 0);
    output.resize(resolution, Flt::zero());
    for (output_idx, output) in output.iter_mut().enumerate() {
        let left: Flt = flt!(output_idx) / flt!(resolution) * flt!(n);
        let right: Flt = (flt!(output_idx) + Flt::one()) / flt!(resolution) * flt!(n);
        let left_floor: usize = (left.floor().to_usize().unwrap()).min(n - 1);
        let right_ceil: usize = (right.ceil().to_usize().unwrap()).min(n);
        *output = Flt::zero();
        for input_idx in left_floor..right_ceil {
            let left_bounded: Flt = flt!(input_idx).max(left);
            let right_bounded: Flt = (flt!(input_idx) + Flt::one()).min(right);
            let scale: Flt = right_bounded - left_bounded;
            *output += input[input_idx].norm_sqr() * scale;
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::bufferpool::*;
    use crate::tests::assert_approx;
    #[test]
    fn test_level_complex_osc() {
        const SQRT_HALF: f64 = 1.0 / std::f64::consts::SQRT_2;
        let vec: Vec<Complex<f64>> = vec![
            Complex::new(1.0, 0.0),
            Complex::new(SQRT_HALF, SQRT_HALF),
            Complex::new(0.0, 1.0),
            Complex::new(-SQRT_HALF, SQRT_HALF),
            Complex::new(-1.0, 0.0),
            Complex::new(-SQRT_HALF, -SQRT_HALF),
            Complex::new(0.0, -1.0),
            Complex::new(SQRT_HALF, -SQRT_HALF),
        ];
        assert_approx(level(&vec).log10() * 10.0, 0.0);
    }
    #[test]
    fn test_bandwidth_silence() {
        let mut buf_pool = ChunkBufPool::<Complex<f64>>::new();
        let mut chunk_buf = buf_pool.get();
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        let chunk = chunk_buf.finalize();
        assert_approx(
            bandwidth(
                0.01,
                &Samples {
                    sample_rate: 48000.0,
                    chunk,
                },
            ),
            0.0,
        );
    }
    #[test]
    fn test_bandwidth_spreadspectrum() {
        let mut buf_pool = ChunkBufPool::<Complex<f64>>::new();
        let mut chunk_buf = buf_pool.get();
        chunk_buf.push(Complex::new(1.0, 0.0));
        chunk_buf.push(Complex::new(1.0, 0.0));
        chunk_buf.push(Complex::new(1.0, 0.0));
        chunk_buf.push(Complex::new(1.0, 0.0));
        chunk_buf.push(Complex::new(1.0, 0.0));
        chunk_buf.push(Complex::new(1.0, 0.0));
        chunk_buf.push(Complex::new(-1.0, 0.0));
        chunk_buf.push(Complex::new(f64::sqrt(0.5), -f64::sqrt(0.5)));
        let chunk = chunk_buf.finalize();
        assert_approx(
            bandwidth(
                0.01,
                &Samples {
                    sample_rate: 48000.0,
                    chunk,
                },
            ),
            0.99 * 48000.0,
        );
    }
    #[test]
    fn test_bandwidth_spreadspectrum_odd() {
        let mut buf_pool = ChunkBufPool::<Complex<f64>>::new();
        let mut chunk_buf = buf_pool.get();
        chunk_buf.push(Complex::new(7.4, -2.1));
        chunk_buf.push(Complex::new(7.4, -2.1));
        chunk_buf.push(Complex::new(7.4, -2.1));
        let chunk = chunk_buf.finalize();
        assert_approx(
            bandwidth(
                0.01,
                &Samples {
                    sample_rate: 48000.0,
                    chunk,
                },
            ),
            0.99 * 48000.0,
        );
    }
    #[test]
    fn test_bandwidth_carrier() {
        let mut buf_pool = ChunkBufPool::<Complex<f64>>::new();
        let mut chunk_buf = buf_pool.get();
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(2.1, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        let chunk = chunk_buf.finalize();
        assert_approx(
            bandwidth(
                0.01,
                &Samples {
                    sample_rate: 48000.0,
                    chunk,
                },
            ),
            0.99 * 48000.0 / 8.0,
        );
    }
    #[test]
    fn test_bandwidth_two_carriers() {
        let mut buf_pool = ChunkBufPool::<Complex<f64>>::new();
        let mut chunk_buf = buf_pool.get();
        chunk_buf.push(Complex::new(1.5, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        chunk_buf.push(Complex::new(1.5, 0.0));
        chunk_buf.push(Complex::new(0.0, 0.0));
        let chunk = chunk_buf.finalize();
        assert_approx(
            bandwidth(
                0.01,
                &Samples {
                    sample_rate: 48000.0,
                    chunk,
                },
            ),
            2.98 * 48000.0 / 8.0,
        );
    }
    #[test]
    fn test_rescale_energy_same_size() {
        let input = vec![
            Complex::new(0.0, 0.0),
            Complex::new(2.0, 1.0),
            Complex::new(-0.5, 0.0),
        ];
        let mut output = vec![];
        rescale_energy(&mut output, 3, &input);
        assert_eq!(output.len(), 3);
        assert_approx(output[0], 0.0);
        assert_approx(output[1], 5.0);
        assert_approx(output[2], 0.25);
    }
    #[test]
    fn test_rescale_energy_smaller() {
        let input = vec![
            Complex::new(1.0, 0.0),
            Complex::new(2.0, 0.0),
            Complex::new(3.0, 0.0),
            Complex::new(4.0, 0.0),
        ];
        let mut output = vec![];
        rescale_energy(&mut output, 3, &input);
        assert_eq!(output.len(), 3);
        assert_approx(output[0], 2.3333333333333);
        assert_approx(output[1], 8.6666666666667);
        assert_approx(output[2], 19.0);
    }
    #[test]
    fn test_rescale_energy_larger() {
        let input = vec![
            Complex::new(1.0, 0.0),
            Complex::new(2.0, 0.0),
            Complex::new(3.0, 0.0),
        ];
        let mut output = vec![];
        rescale_energy(&mut output, 4, &input);
        assert_eq!(output.len(), 4);
        assert_approx(output[0], 0.75);
        assert_approx(output[1], 2.25);
        assert_approx(output[2], 4.25);
        assert_approx(output[3], 6.75);
    }
}