1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395

extern crate rayon;

use std::sync::{Arc, RwLock};
use std::marker::Sync;
use std::fmt::Debug;
use std::cmp::PartialEq;
use rayon::prelude::*;
use super::{
    generation::{Generation, Container},
    genome::Genome,
    problem::{Problem},
    environment::{Envionment},
    genocide::{Genocide},
    survival::{SurvivalCriteria, ParentalCriteria}
};



/// Keep track of the number of stagnant generations the population has had 
/// if it reaches the target_stagnation, the vec of Genocides will be applied 
struct Stagnant {
    target_stagnation: usize,
    current_stagnation: usize,
    previous_top_score: f32,
    cleaners: Vec<Genocide>
}


/// This is just to keep track of a few parameters for 
/// the population, this encapsulates a few arguments for speication 
/// in the algorithm, these are specific to genetic algorithms 
/// which implement speciation between members of the population.
/// It also leaves room for more paramters to be added in the future.
#[derive(Clone)]
pub struct Config {
    pub inbreed_rate: f32,
    pub crossover_rate: f32,
    pub distance: f32,
    pub species_target: usize
}


/// Population is what facilitates the evolution from a 5000 ft view
/// keeping track of what the generation is doing, marking statistics
/// down from each one, and holding resource sensitive things like
/// datasets as well as making sure that the optimization is moving 
/// forward through the stats it keeps (stagnation)
pub struct Population<T, E, P>
    where
        T: Genome<T, E> + Send + Sync,
        E: Envionment + Sized + Send + Sync,
        P: Problem<T>
{
    size: i32,
    dynamic_distance: bool,
    debug_progress: bool,
    config: Config,
    curr_gen: Generation<T, E>,
    stagnation: Stagnant,
    solve: Arc<RwLock<P>>,
    environment: Arc<RwLock<E>>,
    survivor_criteria: SurvivalCriteria,
    parental_criteria: ParentalCriteria
}




/// implmenet the population
impl<T, E, P> Population<T, E, P>
    where
        T: Genome<T, E> + Send + Sync + Clone,
        E: Envionment + Sized + Send + Sync + Default,
        P: Problem<T>
{

    /// base population
    pub fn new() -> Self {   
        Population {
            // define the number of members to participate in evolution and be injected into the current generation
            size: 100,
            // determin if the species should be aiming for a specific number of species by adjusting the distance threshold
            dynamic_distance: false,
            // debug_progress is only used to print out some information from each generation
            // to the console during training to get a glimps into what is going on
            debug_progress: false,
            // create a new config to help the speciation of the population
            config: Config::new(),
            // create a new empty generation to be passed down through the population 
            curr_gen: Generation::<T, E>::new(),
            // keep track of fitness score stagnation through the population
            stagnation: Stagnant::new(0, Vec::new()),
            // Arc<Problem> so the problem can be sent between threads safely without duplicating the problem, 
            // if the problem gets duplicated every time a supervised learning problem with a lot of data could take up a ton of memory
            solve: Arc::new(RwLock::new(P::empty())),
            // create a new solver settings that will hold the specific settings for the defined solver 
            // that will allow the structure to evolve through generations
            environment: Arc::new(RwLock::new(E::default())),
            // determine which genomes will live on and passdown to the next generation
            survivor_criteria: SurvivalCriteria::Fittest,
            // determine how to pick parents to reproduce
            parental_criteria: ParentalCriteria::BiasedRandom
        }
    }



    /// Each generation will be trained by a call to this function 
    /// resulting optimization of the current generation, up to a 
    /// crossover into the next generation which will be set to the 
    /// new current generation
    #[inline]
    pub fn train(&mut self) -> Option<(f32, T)>
        where 
            T: Genome<T, E> + Clone + Send + Sync + Debug + PartialEq,
            P: Send + Sync
    {
        // optimize the population and return the top member 
        let top_member = self.curr_gen.optimize(self.solve.clone())?;
        // adjust the distance of the population if needed
        if self.dynamic_distance { self.adjust_distance(); }
        // speciate the generation into niches then see if the population is stagnant
        // if the population is stagnant, clean the population 
        self.curr_gen.speciate(self.config.distance, &self.environment);
        self.manage_stagnation(top_member.0);
        // If debug is set to true, this is the place to show it before the new generation is 
        if self.debug_progress { self.show_progress(); }
        // create a new generation and return it
        self.curr_gen = self.curr_gen.create_next_generation(self.size, self.config.clone(), &self.environment)?;
        // return the top member score and the member
        Some((top_member.0, (*top_member.1).clone()))
    }

    

    /// Check to see if the population is stagnant or not, if it is 
    /// then go ahead and clean the population 
    fn manage_stagnation(&mut self, curr_top_score: f32) {
        if self.stagnation.target_stagnation == self.stagnation.current_stagnation {
            for cleaner in self.stagnation.cleaners.iter() {
                cleaner.kill(&mut self.curr_gen);
            }
            self.stagnation.current_stagnation = 0;
        } else if curr_top_score == self.stagnation.previous_top_score {
            self.stagnation.current_stagnation += 1;
        } else {
            self.stagnation.current_stagnation = 0;
        }
        self.stagnation.previous_top_score = curr_top_score;
    }



    /// dynamically adjust the distance of a popualtion 
    fn adjust_distance(&mut self) {
        if self.curr_gen.species.len() < self.config.species_target {
            self.config.distance -= 0.1;
        } else if self.curr_gen.species.len() > self.config.species_target {
            self.config.distance += 0.1;
        }
        if self.config.distance < 0.2 {
            self.config.distance = 0.1;
        }
    }



    /// Run the population according to a user defined function, the inputs of which
    /// are a borrowed member which is the top member of the current generation, 
    /// the fitness of that member, and the current number of generations.
    /// This function will continue until this function returns a true value 
    pub fn run<F>(&mut self, runner: F) -> Result<(T, E), &'static str>
        where 
            F: Fn(&T, f32, i32) -> bool + Sized,
            T: Genome<T, E> + Clone + Send + Sync + Debug + PartialEq,
            P: Send + Sync,
            E: Clone
    {
        let mut index = 0;
        loop {
            match self.train() {
                Some(result) => {
                    let (fit, top) = result;
                    if runner(&top, fit, index) {
                        let solution = top.clone();
                        let env = (*self.environment.read().unwrap()).clone();
                        return Ok((solution, env));
                    }
                    index += 1;
                },
                None => return Err("Error Training")
            }
        }
    }


    
    /// if debug is set to true, this is what will print out 
    /// the training to the screen during optimization.
    fn show_progress(&self) {
        println!("\n");
        for i in self.curr_gen.species.iter() {
            i.read().unwrap().display_info();
        }
    }
    

    
    /////////////////////////////////////////////////////////////////////////////////////////////////////////
    /// configure all the settings for the population these all have default settings if they are not set ///
    /// customly, however you might find those default settings do not satisfy the needs of your problem  ///
    /////////////////////////////////////////////////////////////////////////////////////////////////////////
    
    /// Set the beginning generation of the population by a generion object
    /// this can be done in three ways all listed below.
    /// 
    /// 1.) populate_gen - Create a generation object outsize of this scope and give it to the 
    ///                    population, return the popuolation back to the caller
    /// 2.) populate_base - as long as the popualtion size has already been set and the type T has 
    ///                     implemented the base trait fn, this will generate a new base generation
    /// 3.) populate_vec - Give the population a vec of type T and generate a new generation from it 
    ///                    then return the population back to the caller
    /// 4.) populate_clone - Take a base type T and create a population that is made up 
    ///                      completely of clones of this type - they will all be the same 
    ///                      at least for the first generation, this is useful for algorithms like NEAT
    
    /// give the populate a direct generation object 
    pub fn populate_gen(mut self, gen: Generation<T, E>) -> Self {
        self.curr_gen = gen;
        self
    }
    
    /// populate the populate with the base implementation of the genome 
    pub fn populate_base(mut self) -> Self 
        where P: Send + Sync
    {
        self.curr_gen = Generation {
            members: (0..self.size)
                .into_par_iter()
                .map(|_| {
                    let mut lock_set = self.environment.write().unwrap();
                    Container {
                        member: Arc::new(RwLock::new(T::base(&mut lock_set))),
                        fitness_score: 0.0,
                        species: None
                    }    
                })
                .collect(),
            species: Vec::new(),
            survival_criteria: SurvivalCriteria::Fittest,
            parental_criteria: ParentalCriteria::BiasedRandom
        };
        self
    }
    
    /// given a vec of type T which implements Genome, populate the population
    pub fn populate_vec(mut self, vals: Vec<T>) -> Self {
        self.curr_gen = Generation {
            members: vals.into_iter()
                .map(|x| {
                    Container {
                        member: Arc::new(RwLock::new(x)),
                        fitness_score: 0.0,
                        species: None
                    }
                })
                .collect(),
            species: Vec::new(),
            survival_criteria: SurvivalCriteria::Fittest,
            parental_criteria: ParentalCriteria::BiasedRandom
        };
        self
    }
    
    /// Given one type T which is a genome, create a population with clones of the original
    pub fn populate_clone(mut self, original: T) -> Self 
        where T: Genome<T, E> + Clone 
    {
        self.curr_gen = Generation {
            members: (0..self.size as usize)
                .into_iter()
                .map(|_| {
                    Container {
                        member: Arc::new(RwLock::new(original.clone())),
                        fitness_score: 0.0,
                        species: None
                    }
                })
                .collect(),
            species: Vec::new(),
            survival_criteria: SurvivalCriteria::Fittest,
            parental_criteria: ParentalCriteria::BiasedRandom
        };
        self
    }
    
    /// Give solver settings to the population to evolve the strucutre defined 
    pub fn constrain(mut self, environment: E) -> Self {
        self.environment = Arc::new(RwLock::new(environment));
        self
    }
    
    /// Set the size of the population, the population size
    /// will default to 100 if this isn't set which could be enough 
    /// depending on the problem being solved 
    pub fn size(mut self, size: i32) -> Self {
        self.size = size;
        self
    }
    
    /// set the dynamic distance bool
    pub fn dynamic_distance(mut self, opt: bool) -> Self {
        self.dynamic_distance = opt;
        self
    }
    
    /// set the stagnation number of the population
    pub fn stagnation(mut self, stag: usize, cleaner: Vec<Genocide>) -> Self {
        self.stagnation = Stagnant::new(stag, cleaner);
        self
    }
   
    /// Set a config object to the population, these are arguments related
    /// to evolution through speciation, so these are all speciation
    /// arguments
    pub fn configure(mut self, spec: Config) -> Self {
        self.config = spec;
        self
    }
    
    /// Impose a problem on the population, in other words, 
    /// give the population a problem to solve. This 
    /// will default to an empty problem, meaning the population
    /// will not solve anything if this isn't set. This is really
    /// the most important arguemnt for the population
    pub fn impose(mut self, prob: P) -> Self {
        self.solve = Arc::new(RwLock::new(prob));
        self
    }
    
    /// debug determines what to display to the screen during evolution
    pub fn debug(mut self, d: bool) -> Self {
        self.debug_progress = d;
        self
    }

    /// give the population a survival cirteria, if none is supplied then it 
    /// defaults to the fittest genome from each species
    pub fn survivor_criteria(mut self, survive: SurvivalCriteria) -> Self {
        self.survivor_criteria = survive;
        self
    }

    /// give the population a way to pick the parents, if none is supplied 
    /// then default to biasedrandom genomes 
    pub fn parental_criteria(mut self, parents: ParentalCriteria) -> Self {
        self.parental_criteria =parents;
        self
    }


}




/// This is a default config implementation which 
/// needs to be set for the population to evolve 
/// with speciation. These numbers need to be 
/// set for the evolution to work correctly
impl Config {
    pub fn new() -> Self {
        Config {
            inbreed_rate: 0.0,
            crossover_rate: 0.0,
            distance: 0.0,
            species_target: 0
        }
    }
}




impl Stagnant {
    pub fn new(target_stagnation: usize, cleaners: Vec<Genocide>) -> Self {
        Stagnant {
            target_stagnation,
            current_stagnation: 0,
            previous_top_score: 0.0,
            cleaners
        }
    }
}