1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
// Copyright (c) Sean Lawlor
//
// This source code is licensed under both the MIT license found in the
// LICENSE-MIT file in the root directory of this source tree.

//! This module contains the basic building blocks of an actor.
//!
//! They are:
//! [Actor]: The behavior definition for an actor's internal processing logic + state management
//! [ActorRuntime]: Management structure processing the message handler, signals, and supervision events in a loop
//!
//! ## Actor Supervision
//!
//! Supervision is a special notion of "ownership" over actors by a parent (supervisor).
//! Supervisors are responsible for the lifecycle of a child actor such that they get notified
//! when a child actor starts, stops, or panics (when possible). The supervisor can then decide
//! how to handle the event. Should it restart the actor, leave it dead, potentially die itself
//! notifying the supervisor's supervisor? That's up to the implementation of the [super::Actor]
//!
//! This is currently an initial implementation of [Erlang supervisors](https://www.erlang.org/doc/man/supervisor.html)
//!
//! An example supervision tree may look like:
//!
//! ```text
//! Root/
//! ├─ Actor A/
//! │  ├─ Actor A_1/
//! │  ├─ Actor A_2/
//! ├─ Actor B/
//! ├─ Actor C/
//! │  ├─ Actor C_1/
//! │  │  ├─ Actor C_1_1/
//! │  │  │  ├─ Actor C_1_1_1/
//! ```
//!
//! To link actors together in the supervision tree, there are 2 choices.
//!
//! 1. [Actor::spawn_linked] which requires supplying the supervisor to the actor upon spawning a child.
//! This call will link the supervision tree as early as possible in the lifecycle of the actors,
//! such that a failure or panic in `post_start` will be captured and notify the supervisor
//! 2. `ActorCell::link` will link actors together after-the-fact, once already spawned. This is helpful
//! for actors which are originally created independently but have some latent relationship to each
//! other. However due to startup routines and asynchronous processing, it's unlikely that failures
//! in `post_start` and any other asynchronous handling will be captured in the supervision tree.
//!
//! ## Handling panics
//!
//! Another point to consider in actor frameworks are `panic!`s. The actor runtime captures and transforms
//! a panic in an actor into the string message equivalent upon exit. However the traditional panic will still
//! log to `stderr` for tracing. You can additionally setup a [panic hook](https://doc.rust-lang.org/std/panic/fn.set_hook.html)
//! to do things like capturing backtraces on the unwinding panic.

#[cfg(not(feature = "async-trait"))]
use std::future::Future;
use std::panic::AssertUnwindSafe;

use futures::TryFutureExt;

use crate::concurrency::JoinHandle;
use crate::ActorId;

pub mod messages;
use messages::*;

pub mod actor_cell;
pub mod actor_id;
pub(crate) mod actor_properties;
pub mod actor_ref;
mod supervision;

#[cfg(test)]
mod tests;

use crate::errors::{ActorErr, ActorProcessingErr, MessagingErr, SpawnErr};
use crate::{ActorName, Message, State};
use actor_cell::{ActorCell, ActorPortSet, ActorStatus};
use actor_ref::ActorRef;

pub(crate) fn get_panic_string(e: Box<dyn std::any::Any + Send>) -> ActorProcessingErr {
    match e.downcast::<String>() {
        Ok(v) => From::from(*v),
        Err(e) => match e.downcast::<&str>() {
            Ok(v) => From::from(*v),
            _ => From::from("Unknown panic occurred which couldn't be coerced to a string"),
        },
    }
}

/// [Actor] defines the behavior of an Actor. It specifies the
/// Message type, State type, and all processing logic for the actor
///
/// Additionally it aliases the calls for `spawn` and `spawn_linked` from
/// [ActorRuntime] for convenient startup + lifecycle management
///
/// NOTE: All of the implemented trait functions
///
/// * `pre_start`
/// * `post_start`
/// * `post_stop`
/// * `handle`
/// * `handle_serialized` (Available with `cluster` feature only)
/// * `handle_supervision_evt`
///
/// return a [Result<_, ActorProcessingError>] where the error type is an
/// alias of [Box<dyn std::error::Error + Send + Sync + 'static>]. This is treated
/// as an "unhandled" error and will terminate the actor + execute necessary supervision
/// patterns. Panics are also captured from the inner functions and wrapped into an Error
/// type, however should an [Err(_)] result from any of these functions the **actor will
/// terminate** and cleanup.
#[cfg_attr(feature = "async-trait", crate::async_trait)]
pub trait Actor: Sized + Sync + Send + 'static {
    /// The message type for this actor
    type Msg: Message;

    /// The type of state this actor manages internally
    type State: State;

    /// Initialization arguments
    type Arguments: State;

    /// Invoked when an actor is being started by the system.
    ///
    /// Any initialization inherent to the actor's role should be
    /// performed here hence why it returns the initial state.
    ///
    /// Panics in `pre_start` do not invoke the
    /// supervision strategy and the actor won't be started. [Actor]::`spawn`
    /// will return an error to the caller
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `args` - Arguments that are passed in the spawning of the actor which might
    /// be necessary to construct the initial state
    ///
    /// Returns an initial [Actor::State] to bootstrap the actor
    #[cfg(not(feature = "async-trait"))]
    fn pre_start(
        &self,
        myself: ActorRef<Self::Msg>,
        args: Self::Arguments,
    ) -> impl Future<Output = Result<Self::State, ActorProcessingErr>> + Send;
    /// Invoked when an actor is being started by the system.
    ///
    /// Any initialization inherent to the actor's role should be
    /// performed here hence why it returns the initial state.
    ///
    /// Panics in `pre_start` do not invoke the
    /// supervision strategy and the actor won't be started. [Actor]::`spawn`
    /// will return an error to the caller
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `args` - Arguments that are passed in the spawning of the actor which might
    /// be necessary to construct the initial state
    ///
    /// Returns an initial [Actor::State] to bootstrap the actor
    #[cfg(feature = "async-trait")]
    async fn pre_start(
        &self,
        myself: ActorRef<Self::Msg>,
        args: Self::Arguments,
    ) -> Result<Self::State, ActorProcessingErr>;

    /// Invoked after an actor has started.
    ///
    /// Any post initialization can be performed here, such as writing
    /// to a log file, emitting metrics.
    ///
    /// Panics in `post_start` follow the supervision strategy.
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `state` - A mutable reference to the internal actor's state
    #[allow(unused_variables)]
    #[cfg(not(feature = "async-trait"))]
    fn post_start(
        &self,
        myself: ActorRef<Self::Msg>,
        state: &mut Self::State,
    ) -> impl Future<Output = Result<(), ActorProcessingErr>> + Send {
        async { Ok(()) }
    }
    /// Invoked after an actor has started.
    ///
    /// Any post initialization can be performed here, such as writing
    /// to a log file, emitting metrics.
    ///
    /// Panics in `post_start` follow the supervision strategy.
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `state` - A mutable reference to the internal actor's state
    #[allow(unused_variables)]
    #[cfg(feature = "async-trait")]
    async fn post_start(
        &self,
        myself: ActorRef<Self::Msg>,
        state: &mut Self::State,
    ) -> Result<(), ActorProcessingErr> {
        Ok(())
    }

    /// Invoked after an actor has been stopped to perform final cleanup. In the
    /// event the actor is terminated with [Signal::Kill] or has self-panicked,
    /// `post_stop` won't be called.
    ///
    /// Panics in `post_stop` follow the supervision strategy.
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `state` - A mutable reference to the internal actor's last known state
    #[allow(unused_variables)]
    #[cfg(not(feature = "async-trait"))]
    fn post_stop(
        &self,
        myself: ActorRef<Self::Msg>,
        state: &mut Self::State,
    ) -> impl Future<Output = Result<(), ActorProcessingErr>> + Send {
        async { Ok(()) }
    }
    /// Invoked after an actor has been stopped to perform final cleanup. In the
    /// event the actor is terminated with [Signal::Kill] or has self-panicked,
    /// `post_stop` won't be called.
    ///
    /// Panics in `post_stop` follow the supervision strategy.
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `state` - A mutable reference to the internal actor's last known state
    #[allow(unused_variables)]
    #[cfg(feature = "async-trait")]
    async fn post_stop(
        &self,
        myself: ActorRef<Self::Msg>,
        state: &mut Self::State,
    ) -> Result<(), ActorProcessingErr> {
        Ok(())
    }

    /// Handle the incoming message from the event processing loop. Unhandled panickes will be
    /// captured and sent to the supervisor(s)
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `message` - The message to process
    /// * `state` - A mutable reference to the internal actor's state
    #[allow(unused_variables)]
    #[cfg(not(feature = "async-trait"))]
    fn handle(
        &self,
        myself: ActorRef<Self::Msg>,
        message: Self::Msg,
        state: &mut Self::State,
    ) -> impl Future<Output = Result<(), ActorProcessingErr>> + Send {
        async { Ok(()) }
    }
    /// Handle the incoming message from the event processing loop. Unhandled panickes will be
    /// captured and sent to the supervisor(s)
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `message` - The message to process
    /// * `state` - A mutable reference to the internal actor's state
    #[allow(unused_variables)]
    #[cfg(feature = "async-trait")]
    async fn handle(
        &self,
        myself: ActorRef<Self::Msg>,
        message: Self::Msg,
        state: &mut Self::State,
    ) -> Result<(), ActorProcessingErr> {
        Ok(())
    }

    /// Handle the remote incoming message from the event processing loop. Unhandled panickes will be
    /// captured and sent to the supervisor(s)
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `message` - The serialized message to handle
    /// * `state` - A mutable reference to the internal actor's state
    #[allow(unused_variables)]
    #[cfg(all(feature = "cluster", not(feature = "async-trait")))]
    fn handle_serialized(
        &self,
        myself: ActorRef<Self::Msg>,
        message: crate::message::SerializedMessage,
        state: &mut Self::State,
    ) -> impl Future<Output = Result<(), ActorProcessingErr>> + Send {
        async { Ok(()) }
    }
    /// Handle the remote incoming message from the event processing loop. Unhandled panickes will be
    /// captured and sent to the supervisor(s)
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `message` - The serialized message to handle
    /// * `state` - A mutable reference to the internal actor's state
    #[allow(unused_variables)]
    #[cfg(all(feature = "cluster", feature = "async-trait"))]
    async fn handle_serialized(
        &self,
        myself: ActorRef<Self::Msg>,
        message: crate::message::SerializedMessage,
        state: &mut Self::State,
    ) -> Result<(), ActorProcessingErr> {
        Ok(())
    }

    /// Handle the incoming supervision event. Unhandled panicks will captured and
    /// sent the the supervisor(s). The default supervision behavior is to exit the
    /// supervisor on any child exit. To override this behavior, implement this function.
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `message` - The message to process
    /// * `state` - A mutable reference to the internal actor's state
    #[allow(unused_variables)]
    #[cfg(not(feature = "async-trait"))]
    fn handle_supervisor_evt(
        &self,
        myself: ActorRef<Self::Msg>,
        message: SupervisionEvent,
        state: &mut Self::State,
    ) -> impl Future<Output = Result<(), ActorProcessingErr>> + Send {
        async move {
            match message {
                SupervisionEvent::ActorTerminated(who, _, _)
                | SupervisionEvent::ActorPanicked(who, _) => {
                    myself.stop(None);
                }
                _ => {}
            }
            Ok(())
        }
    }
    /// Handle the incoming supervision event. Unhandled panicks will captured and
    /// sent the the supervisor(s). The default supervision behavior is to exit the
    /// supervisor on any child exit. To override this behavior, implement this function.
    ///
    /// * `myself` - A handle to the [ActorCell] representing this actor
    /// * `message` - The message to process
    /// * `state` - A mutable reference to the internal actor's state
    #[allow(unused_variables)]
    #[cfg(feature = "async-trait")]
    async fn handle_supervisor_evt(
        &self,
        myself: ActorRef<Self::Msg>,
        message: SupervisionEvent,
        state: &mut Self::State,
    ) -> Result<(), ActorProcessingErr> {
        match message {
            SupervisionEvent::ActorTerminated(who, _, _)
            | SupervisionEvent::ActorPanicked(who, _) => {
                myself.stop(None);
            }
            _ => {}
        }
        Ok(())
    }

    /// Spawn an actor of this type, which is unsupervised, automatically starting
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The implementation of Self
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<()>))] upon successful start, denoting the actor reference
    /// along with the join handle which will complete when the actor terminates. Returns [Err(SpawnErr)] if
    /// the actor failed to start
    #[cfg(not(feature = "async-trait"))]
    fn spawn(
        name: Option<ActorName>,
        handler: Self,
        startup_args: Self::Arguments,
    ) -> impl Future<Output = Result<(ActorRef<Self::Msg>, JoinHandle<()>), SpawnErr>> + Send {
        ActorRuntime::<Self>::spawn(name, handler, startup_args)
    }
    /// Spawn an actor of this type, which is unsupervised, automatically starting
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The implementation of Self
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<()>))] upon successful start, denoting the actor reference
    /// along with the join handle which will complete when the actor terminates. Returns [Err(SpawnErr)] if
    /// the actor failed to start
    #[cfg(feature = "async-trait")]
    async fn spawn(
        name: Option<ActorName>,
        handler: Self,
        startup_args: Self::Arguments,
    ) -> Result<(ActorRef<Self::Msg>, JoinHandle<()>), SpawnErr> {
        ActorRuntime::<Self>::spawn(name, handler, startup_args).await
    }

    /// Spawn an actor of this type with a supervisor, automatically starting the actor
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The implementation of Self
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    /// * `supervisor`: The [ActorCell] which is to become the supervisor (parent) of this actor
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<()>))] upon successful start, denoting the actor reference
    /// along with the join handle which will complete when the actor terminates. Returns [Err(SpawnErr)] if
    /// the actor failed to start
    #[cfg(not(feature = "async-trait"))]
    fn spawn_linked(
        name: Option<ActorName>,
        handler: Self,
        startup_args: Self::Arguments,
        supervisor: ActorCell,
    ) -> impl Future<Output = Result<(ActorRef<Self::Msg>, JoinHandle<()>), SpawnErr>> + Send {
        ActorRuntime::<Self>::spawn_linked(name, handler, startup_args, supervisor)
    }
    /// Spawn an actor of this type with a supervisor, automatically starting the actor
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The implementation of Self
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    /// * `supervisor`: The [ActorCell] which is to become the supervisor (parent) of this actor
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<()>))] upon successful start, denoting the actor reference
    /// along with the join handle which will complete when the actor terminates. Returns [Err(SpawnErr)] if
    /// the actor failed to start
    #[cfg(feature = "async-trait")]
    async fn spawn_linked(
        name: Option<ActorName>,
        handler: Self,
        startup_args: Self::Arguments,
        supervisor: ActorCell,
    ) -> Result<(ActorRef<Self::Msg>, JoinHandle<()>), SpawnErr> {
        ActorRuntime::<Self>::spawn_linked(name, handler, startup_args, supervisor).await
    }
}

/// Helper struct for tracking the results from actor processing loops
#[doc(hidden)]
struct ActorLoopResult {
    should_exit: bool,
    exit_reason: Option<String>,
    was_killed: bool,
}

impl ActorLoopResult {
    pub(crate) fn ok() -> Self {
        Self {
            should_exit: false,
            exit_reason: None,
            was_killed: false,
        }
    }

    pub(crate) fn stop(reason: Option<String>) -> Self {
        Self {
            should_exit: true,
            exit_reason: reason,
            was_killed: false,
        }
    }

    pub(crate) fn signal(signal_str: Option<String>) -> Self {
        Self {
            should_exit: true,
            exit_reason: signal_str,
            was_killed: true,
        }
    }
}

/// [ActorRuntime] is a struct which represents the processing actor.
///
///  This struct is consumed by the `start` operation, but results in an
/// [ActorRef] to communicate and operate with along with the [JoinHandle]
/// representing the actor's async processing loop.
pub struct ActorRuntime<TActor>
where
    TActor: Actor,
{
    actor_ref: ActorRef<TActor::Msg>,
    handler: TActor,
    id: ActorId,
    name: Option<String>,
}

impl<TActor> ActorRuntime<TActor>
where
    TActor: Actor,
{
    /// Spawn an actor, which is unsupervised, automatically starting the actor
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The [Actor] defining the logic for this actor
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<()>))] upon successful start, denoting the actor reference
    /// along with the join handle which will complete when the actor terminates. Returns [Err(SpawnErr)] if
    /// the actor failed to start
    pub async fn spawn(
        name: Option<ActorName>,
        handler: TActor,
        startup_args: TActor::Arguments,
    ) -> Result<(ActorRef<TActor::Msg>, JoinHandle<()>), SpawnErr> {
        let (actor, ports) = Self::new(name, handler)?;
        actor.start(ports, startup_args, None).await
    }

    /// Spawn an actor with a supervisor, automatically starting the actor
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The [Actor] defining the logic for this actor
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    /// * `supervisor`: The [ActorCell] which is to become the supervisor (parent) of this actor
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<()>))] upon successful start, denoting the actor reference
    /// along with the join handle which will complete when the actor terminates. Returns [Err(SpawnErr)] if
    /// the actor failed to start
    pub async fn spawn_linked(
        name: Option<ActorName>,
        handler: TActor,
        startup_args: TActor::Arguments,
        supervisor: ActorCell,
    ) -> Result<(ActorRef<TActor::Msg>, JoinHandle<()>), SpawnErr> {
        let (actor, ports) = Self::new(name, handler)?;
        actor.start(ports, startup_args, Some(supervisor)).await
    }

    /// Spawn an actor instantly, not waiting on the actor's `pre_start` routine. This is helpful
    /// for actors where you want access to the send messages into the actor's message queue
    /// without waiting on an asynchronous context.
    ///
    /// **WARNING** Failures in the pre_start routine need to be waited on in the join handle
    /// since they will NOT fail the spawn operation in this context
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The [Actor] defining the logic for this actor
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<Result<JoinHandle<()>, SpawnErr>>))] upon successful creation of the
    /// message queues, so you can begin sending messages. However the associated [JoinHandle] contains the inner
    /// information around if the actor successfully started or not in it's `pre_start` routine. Returns [Err(SpawnErr)] if
    /// the actor name is already allocated
    #[allow(clippy::type_complexity)]
    pub fn spawn_instant(
        name: Option<ActorName>,
        handler: TActor,
        startup_args: TActor::Arguments,
    ) -> Result<
        (
            ActorRef<TActor::Msg>,
            JoinHandle<Result<JoinHandle<()>, SpawnErr>>,
        ),
        SpawnErr,
    > {
        let (actor, ports) = Self::new(name.clone(), handler)?;
        let actor_ref = actor.actor_ref.clone();
        let join_op = crate::concurrency::spawn_named(name.as_deref(), async move {
            let (_, handle) = actor.start(ports, startup_args, None).await?;
            Ok(handle)
        });
        Ok((actor_ref, join_op))
    }

    /// Spawn an actor instantly with supervision, not waiting on the actor's `pre_start` routine.
    /// This is helpful for actors where you want access to the send messages into the actor's
    /// message queue without waiting on an asynchronous context.
    ///
    /// **WARNING** Failures in the pre_start routine need to be waited on in the join handle
    /// since they will NOT fail the spawn operation in this context. Additionally the supervision
    /// tree will **NOT** be linked until the `pre_start` completes so there is a chance an actor
    /// is lost during `pre_start` and not successfully started unless it's specifically handled
    /// by the caller by awaiting later.
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The [Actor] defining the logic for this actor
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    /// * `supervisor`: The [ActorCell] which is to become the supervisor (parent) of this actor
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<Result<JoinHandle<()>, SpawnErr>>))] upon successful creation of the
    /// message queues, so you can begin sending messages. However the associated [JoinHandle] contains the inner
    /// information around if the actor successfully started or not in it's `pre_start` routine. Returns [Err(SpawnErr)] if
    /// the actor name is already allocated
    #[allow(clippy::type_complexity)]
    pub fn spawn_linked_instant(
        name: Option<ActorName>,
        handler: TActor,
        startup_args: TActor::Arguments,
        supervisor: ActorCell,
    ) -> Result<
        (
            ActorRef<TActor::Msg>,
            JoinHandle<Result<JoinHandle<()>, SpawnErr>>,
        ),
        SpawnErr,
    > {
        let (actor, ports) = Self::new(name.clone(), handler)?;
        let actor_ref = actor.actor_ref.clone();
        let join_op = crate::concurrency::spawn_named(name.as_deref(), async move {
            let (_, handle) = actor.start(ports, startup_args, Some(supervisor)).await?;
            Ok(handle)
        });
        Ok((actor_ref, join_op))
    }

    /// Spawn a REMOTE actor with a supervisor, automatically starting the actor. Only for use
    /// by `ractor_cluster::node::NodeSession`
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler`: The [Actor] defining the logic for this actor
    /// * `startup_args`: Arguments passed to the `pre_start` call of the [Actor] to facilitate startup and
    /// initial state creation
    /// * `supervisor`: The [ActorCell] which is to become the supervisor (parent) of this actor
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<()>))] upon successful start, denoting the actor reference
    /// along with the join handle which will complete when the actor terminates. Returns [Err(SpawnErr)] if
    /// the actor failed to start
    #[cfg(feature = "cluster")]
    pub async fn spawn_linked_remote(
        name: Option<ActorName>,
        handler: TActor,
        id: ActorId,
        startup_args: TActor::Arguments,
        supervisor: ActorCell,
    ) -> Result<(ActorRef<TActor::Msg>, JoinHandle<()>), SpawnErr> {
        if id.is_local() {
            Err(SpawnErr::StartupPanic(From::from(
                "Cannot spawn a remote actor when the identifier is not remote!",
            )))
        } else {
            let (actor_cell, ports) = actor_cell::ActorCell::new_remote::<TActor>(name, id)?;
            let id = actor_cell.get_id();
            let name = actor_cell.get_name();
            let (actor, ports) = (
                Self {
                    actor_ref: actor_cell.into(),
                    handler,
                    id,
                    name,
                },
                ports,
            );
            actor.start(ports, startup_args, Some(supervisor)).await
        }
    }

    /// Create a new actor with some handler implementation and initial state
    ///
    /// * `name`: A name to give the actor. Useful for global referencing or debug printing
    /// * `handler` The [Actor] defining the logic for this actor
    ///
    /// Returns A tuple [(Actor, ActorPortSet)] to be passed to the `start` function of [Actor]
    fn new(name: Option<ActorName>, handler: TActor) -> Result<(Self, ActorPortSet), SpawnErr> {
        let (actor_cell, ports) = actor_cell::ActorCell::new::<TActor>(name)?;
        let id = actor_cell.get_id();
        let name = actor_cell.get_name();
        Ok((
            Self {
                actor_ref: actor_cell.into(),
                handler,
                id,
                name,
            },
            ports,
        ))
    }

    /// Start the actor immediately, optionally linking to a parent actor (supervision tree)
    ///
    /// NOTE: This returned [crate::concurrency::JoinHandle] is guaranteed to not panic (unless the runtime is shutting down perhaps).
    /// An inner join handle is capturing panic results from any part of the inner tasks, so therefore
    /// we can safely ignore it, or wait on it to block on the actor's progress
    ///
    /// * `ports` - The [ActorPortSet] for this actor
    /// * `supervisor` - The optional [ActorCell] representing the supervisor of this actor
    ///
    /// Returns a [Ok((ActorRef, JoinHandle<()>))] upon successful start, denoting the actor reference
    /// along with the join handle which will complete when the actor terminates. Returns [Err(SpawnErr)] if
    /// the actor failed to start
    #[tracing::instrument(name = "Actor", skip(self, ports, startup_args, supervisor), fields(id = self.id.to_string(), name = self.name))]
    async fn start(
        self,
        ports: ActorPortSet,
        startup_args: TActor::Arguments,
        supervisor: Option<ActorCell>,
    ) -> Result<(ActorRef<TActor::Msg>, JoinHandle<()>), SpawnErr> {
        // cannot start an actor more than once
        if self.actor_ref.get_status() != ActorStatus::Unstarted {
            return Err(SpawnErr::ActorAlreadyStarted);
        }

        let Self {
            handler,
            actor_ref,
            id,
            name,
        } = self;

        actor_ref.set_status(ActorStatus::Starting);

        // Perform the pre-start routine, crashing immediately if we fail to start
        let mut state = Self::do_pre_start(actor_ref.clone(), &handler, startup_args)
            .await?
            .map_err(SpawnErr::StartupPanic)?;

        // setup supervision
        if let Some(sup) = &supervisor {
            actor_ref.link(sup.clone());
        }

        // Generate the ActorRef which will be returned
        let myself_ret = actor_ref.clone();

        // run the processing loop, backgrounding the work
        let handle = crate::concurrency::spawn_named(actor_ref.get_name().as_deref(), async move {
            let myself = actor_ref.clone();
            let evt = match Self::processing_loop(ports, &mut state, &handler, actor_ref, id, name)
                .await
            {
                Ok(exit_reason) => SupervisionEvent::ActorTerminated(
                    myself.get_cell(),
                    Some(BoxedState::new(state)),
                    exit_reason,
                ),
                Err(actor_err) => match actor_err {
                    ActorErr::Cancelled => SupervisionEvent::ActorTerminated(
                        myself.get_cell(),
                        None,
                        Some("killed".to_string()),
                    ),
                    ActorErr::Panic(msg) => SupervisionEvent::ActorPanicked(myself.get_cell(), msg),
                },
            };

            // terminate children
            myself.terminate();

            // notify supervisors of the actor's death
            myself.notify_supervisor_and_monitors(evt);

            // clear any monitor actors
            myself.clear_monitors();

            // unlink superisors
            if let Some(sup) = supervisor {
                myself.unlink(sup);
            }

            // set status to stopped
            myself.set_status(ActorStatus::Stopped);
        });

        Ok((myself_ret, handle))
    }

    #[tracing::instrument(name = "Actor", skip(ports, state, handler, myself, _id, _name), fields(id = _id.to_string(), name = _name))]
    async fn processing_loop(
        mut ports: ActorPortSet,
        state: &mut TActor::State,
        handler: &TActor,
        myself: ActorRef<TActor::Msg>,
        _id: ActorId,
        _name: Option<String>,
    ) -> Result<Option<String>, ActorErr> {
        // perform the post-start, with supervision enabled
        Self::do_post_start(myself.clone(), handler, state)
            .await?
            .map_err(ActorErr::Panic)?;

        myself.set_status(ActorStatus::Running);
        myself.notify_supervisor_and_monitors(SupervisionEvent::ActorStarted(myself.get_cell()));

        let myself_clone = myself.clone();

        let future = async move {
            // the message processing loop. If we get an exit flag, try and capture the exit reason if there
            // is one
            loop {
                let ActorLoopResult {
                    should_exit,
                    exit_reason,
                    was_killed,
                } = Self::process_message(myself.clone(), state, handler, &mut ports)
                    .await
                    .map_err(ActorErr::Panic)?;
                // processing loop exit
                if should_exit {
                    return Ok((state, exit_reason, was_killed));
                }
            }
        };

        // capture any panics in this future and convert to an ActorErr
        let loop_done = futures::FutureExt::catch_unwind(AssertUnwindSafe(future))
            .map_err(|err| ActorErr::Panic(get_panic_string(err)))
            .await;

        // set status to stopping
        myself_clone.set_status(ActorStatus::Stopping);

        let (exit_state, exit_reason, was_killed) = loop_done??;

        // if we didn't exit in error mode, call `post_stop`
        if !was_killed {
            Self::do_post_stop(myself_clone, handler, exit_state)
                .await?
                .map_err(ActorErr::Panic)?;
        }

        Ok(exit_reason)
    }

    /// Process a message, returning the "new" state (if changed)
    /// along with optionally whether we were signaled mid-processing or not
    ///
    /// * `myself` - The current [ActorRef]
    /// * `state` - The current [Actor::State] object
    /// * `handler` - Pointer to the [Actor] definition
    /// * `ports` - The mutable [ActorPortSet] which are the message ports for this actor
    ///
    /// Returns a tuple of the next [Actor::State] and a flag to denote if the processing
    /// loop is done
    async fn process_message(
        myself: ActorRef<TActor::Msg>,
        state: &mut TActor::State,
        handler: &TActor,
        ports: &mut ActorPortSet,
    ) -> Result<ActorLoopResult, ActorProcessingErr> {
        match ports.listen_in_priority().await {
            Ok(actor_port_message) => match actor_port_message {
                actor_cell::ActorPortMessage::Signal(signal) => {
                    Ok(ActorLoopResult::signal(Self::handle_signal(myself, signal)))
                }
                actor_cell::ActorPortMessage::Stop(stop_message) => {
                    let exit_reason = match stop_message {
                        StopMessage::Stop => {
                            tracing::trace!("Actor {:?} stopped with no reason", myself.get_id());
                            None
                        }
                        StopMessage::Reason(reason) => {
                            tracing::trace!(
                                "Actor {:?} stopped with reason '{reason}'",
                                myself.get_id(),
                            );
                            Some(reason)
                        }
                    };
                    Ok(ActorLoopResult::stop(exit_reason))
                }
                actor_cell::ActorPortMessage::Supervision(supervision) => {
                    let future = Self::handle_supervision_message(
                        myself.clone(),
                        state,
                        handler,
                        supervision,
                    );
                    match ports.run_with_signal(future).await {
                        Ok(Ok(())) => Ok(ActorLoopResult::ok()),
                        Ok(Err(internal_err)) => Err(internal_err),
                        Err(signal) => {
                            Ok(ActorLoopResult::signal(Self::handle_signal(myself, signal)))
                        }
                    }
                }
                actor_cell::ActorPortMessage::Message(msg) => {
                    let future = Self::handle_message(myself.clone(), state, handler, msg);
                    match ports.run_with_signal(future).await {
                        Ok(Ok(())) => Ok(ActorLoopResult::ok()),
                        Ok(Err(internal_err)) => Err(internal_err),
                        Err(signal) => {
                            Ok(ActorLoopResult::signal(Self::handle_signal(myself, signal)))
                        }
                    }
                }
            },
            Err(MessagingErr::ChannelClosed) => {
                // one of the channels is closed, this means
                // the receiver was dropped and in this case
                // we should always die. Therefore we flag
                // to terminate
                Ok(ActorLoopResult::signal(Self::handle_signal(
                    myself,
                    Signal::Kill,
                )))
            }
            Err(MessagingErr::InvalidActorType) => {
                // not possible. Treat like a channel closed
                Ok(ActorLoopResult::signal(Self::handle_signal(
                    myself,
                    Signal::Kill,
                )))
            }
            Err(MessagingErr::SendErr(_)) => {
                // not possible. Treat like a channel closed
                Ok(ActorLoopResult::signal(Self::handle_signal(
                    myself,
                    Signal::Kill,
                )))
            }
        }
    }

    async fn handle_message(
        myself: ActorRef<TActor::Msg>,
        state: &mut TActor::State,
        handler: &TActor,
        msg: crate::message::BoxedMessage,
    ) -> Result<(), ActorProcessingErr> {
        // panic in order to kill the actor
        #[cfg(feature = "cluster")]
        {
            // A `RemoteActor` will handle serialized messages, without decoding them, forwarding them
            // to the remote system for decoding + handling by the real implementation. Therefore `RemoteActor`s
            // can be thought of as a "shim" to a real actor on a remote system
            if !myself.get_id().is_local() {
                match msg.serialized_msg {
                    Some(serialized_msg) => {
                        return handler
                            .handle_serialized(myself, serialized_msg, state)
                            .await;
                    }
                    None => {
                        return Err(From::from(
                            "`RemoteActor` failed to read `SerializedMessage` from `BoxedMessage`",
                        ));
                    }
                }
            }
        }

        // An error here will bubble up to terminate the actor
        let typed_msg = TActor::Msg::from_boxed(msg)?;
        handler.handle(myself, typed_msg, state).await
    }

    fn handle_signal(myself: ActorRef<TActor::Msg>, signal: Signal) -> Option<String> {
        match &signal {
            Signal::Kill => {
                myself.terminate();
            }
        }
        Some(signal.to_string())
    }

    async fn handle_supervision_message(
        myself: ActorRef<TActor::Msg>,
        state: &mut TActor::State,
        handler: &TActor,
        message: SupervisionEvent,
    ) -> Result<(), ActorProcessingErr> {
        handler.handle_supervisor_evt(myself, message, state).await
    }

    async fn do_pre_start(
        myself: ActorRef<TActor::Msg>,
        handler: &TActor,
        arguments: TActor::Arguments,
    ) -> Result<Result<TActor::State, ActorProcessingErr>, SpawnErr> {
        let future = handler.pre_start(myself, arguments);
        futures::FutureExt::catch_unwind(AssertUnwindSafe(future))
            .await
            .map_err(|err| SpawnErr::StartupPanic(get_panic_string(err)))
    }

    async fn do_post_start(
        myself: ActorRef<TActor::Msg>,
        handler: &TActor,
        state: &mut TActor::State,
    ) -> Result<Result<(), ActorProcessingErr>, ActorErr> {
        let future = handler.post_start(myself, state);
        futures::FutureExt::catch_unwind(AssertUnwindSafe(future))
            .await
            .map_err(|err| ActorErr::Panic(get_panic_string(err)))
    }

    async fn do_post_stop(
        myself: ActorRef<TActor::Msg>,
        handler: &TActor,
        state: &mut TActor::State,
    ) -> Result<Result<(), ActorProcessingErr>, ActorErr> {
        let future = handler.post_stop(myself, state);
        futures::FutureExt::catch_unwind(AssertUnwindSafe(future))
            .await
            .map_err(|err| ActorErr::Panic(get_panic_string(err)))
    }
}