1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
use std::{
    iter,
    path::{Path, PathBuf},
};

use relative_path::RelativePathBuf;

use super::{RootEntry, Filter};

/// VfsRoot identifies a watched directory on the file system.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct VfsRoot(pub u32);

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub(crate) enum FileType {
    File,
    Dir,
}

impl FileType {
    pub(crate) fn is_dir(&self) -> bool {
        *self == FileType::Dir
    }
}

impl std::convert::From<std::fs::FileType> for FileType {
    fn from(v: std::fs::FileType) -> Self {
        if v.is_file() {
            FileType::File
        } else {
            FileType::Dir
        }
    }
}

/// Describes the contents of a single source root.
///
/// `RootData` can be thought of as a glob pattern like `src/**.rs` which
/// specifies the source root or as a function which takes a `PathBuf` and
/// returns `true` if path belongs to the source root
struct RootData {
    root: PathBuf,
    filter: Box<dyn Filter>,
    // result of `root.canonicalize()` if that differs from `root`; `None` otherwise.
    canonical_path: Option<PathBuf>,
    excluded_dirs: Vec<RelativePathBuf>,
}

pub(crate) struct Roots {
    roots: Vec<RootData>,
}

impl Roots {
    pub(crate) fn new(mut paths: Vec<RootEntry>) -> Roots {
        paths.sort_by(|a, b| a.path.cmp(&b.path));
        paths.dedup();

        // A hack to make nesting work.
        paths.sort_by_key(|it| std::cmp::Reverse(it.path.as_os_str().len()));

        // First gather all the nested roots for each path
        let nested_roots = paths
            .iter()
            .enumerate()
            .map(|(i, entry)| {
                paths[..i]
                    .iter()
                    .filter_map(|it| rel_path(&entry.path, &it.path))
                    .collect::<Vec<_>>()
            })
            .collect::<Vec<_>>();

        // Then combine the entry with the matching nested_roots
        let roots = paths
            .into_iter()
            .zip(nested_roots.into_iter())
            .map(|(entry, nested_roots)| RootData::new(entry, nested_roots))
            .collect::<Vec<_>>();

        Roots { roots }
    }
    pub(crate) fn find(
        &self,
        path: &Path,
        expected: FileType,
    ) -> Option<(VfsRoot, RelativePathBuf)> {
        self.iter().find_map(|root| {
            let rel_path = self.contains(root, path, expected)?;
            Some((root, rel_path))
        })
    }
    pub(crate) fn len(&self) -> usize {
        self.roots.len()
    }
    pub(crate) fn iter<'a>(&'a self) -> impl Iterator<Item = VfsRoot> + 'a {
        (0..self.roots.len()).into_iter().map(|idx| VfsRoot(idx as u32))
    }
    pub(crate) fn path(&self, root: VfsRoot) -> &Path {
        self.root(root).path().as_path()
    }

    /// Checks if root contains a path with the given `FileType`
    /// and returns a root-relative path.
    pub(crate) fn contains(
        &self,
        root: VfsRoot,
        path: &Path,
        expected: FileType,
    ) -> Option<RelativePathBuf> {
        let data = self.root(root);
        iter::once(data.path())
            .chain(data.canonical_path.as_ref().into_iter())
            .find_map(|base| to_relative_path(base, path, &data, expected))
    }

    fn root(&self, root: VfsRoot) -> &RootData {
        &self.roots[root.0 as usize]
    }
}

impl RootData {
    fn new(entry: RootEntry, excluded_dirs: Vec<RelativePathBuf>) -> RootData {
        let mut canonical_path = entry.path.canonicalize().ok();
        if Some(&entry.path) == canonical_path.as_ref() {
            canonical_path = None;
        }
        RootData { root: entry.path, filter: entry.filter, canonical_path, excluded_dirs }
    }

    fn path(&self) -> &PathBuf {
        &self.root
    }

    /// Returns true if the given `RelativePath` is included inside this `RootData`
    fn is_included(&self, rel_path: &RelativePathBuf, expected: FileType) -> bool {
        if self.excluded_dirs.iter().any(|d| rel_path.starts_with(d)) {
            return false;
        }

        let parent_included =
            rel_path.parent().map(|d| self.filter.include_dir(&d)).unwrap_or(true);

        if !parent_included {
            return false;
        }

        match expected {
            FileType::File => self.filter.include_file(&rel_path),
            FileType::Dir => self.filter.include_dir(&rel_path),
        }
    }
}

/// Returns the path relative to `base`
fn rel_path(base: &Path, path: &Path) -> Option<RelativePathBuf> {
    let path = path.strip_prefix(base).ok()?;
    RelativePathBuf::from_path(path).ok()
}

/// Returns the path relative to `base` with filtering applied based on `data`
fn to_relative_path(
    base: &Path,
    path: &Path,
    data: &RootData,
    expected: FileType,
) -> Option<RelativePathBuf> {
    let rel_path = rel_path(base, path)?;

    // Apply filtering _only_ if the relative path is non-empty
    // if it's empty, it means we are currently processing the root
    if rel_path.as_str().is_empty() {
        return Some(rel_path);
    }

    if data.is_included(&rel_path, expected) {
        Some(rel_path)
    } else {
        None
    }
}