1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in rustc_hir_analysis/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.

mod cast;
pub(crate) mod closure;
mod coerce;
mod expr;
mod mutability;
mod pat;
mod path;
pub(crate) mod unify;

use std::{convert::identity, iter, ops::Index};

use chalk_ir::{
    cast::Cast,
    fold::TypeFoldable,
    interner::HasInterner,
    visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor},
    DebruijnIndex, Mutability, Safety, Scalar, TyKind, TypeFlags, Variance,
};
use either::Either;
use hir_def::{
    body::Body,
    builtin_type::{BuiltinInt, BuiltinType, BuiltinUint},
    data::{ConstData, StaticData},
    hir::LabelId,
    hir::{BindingAnnotation, BindingId, ExprId, ExprOrPatId, PatId},
    lang_item::{LangItem, LangItemTarget},
    layout::Integer,
    path::{ModPath, Path},
    resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs},
    type_ref::TypeRef,
    AdtId, AssocItemId, DefWithBodyId, FieldId, FunctionId, ItemContainerId, Lookup, TraitId,
    TupleFieldId, TupleId, TypeAliasId, VariantId,
};
use hir_expand::name::{name, Name};
use indexmap::IndexSet;
use la_arena::{ArenaMap, Entry};
use rustc_hash::{FxHashMap, FxHashSet};
use stdx::{always, never};
use triomphe::Arc;

use crate::{
    db::HirDatabase,
    fold_tys,
    infer::{coerce::CoerceMany, unify::InferenceTable},
    lower::ImplTraitLoweringMode,
    static_lifetime, to_assoc_type_id,
    traits::FnTrait,
    utils::{InTypeConstIdMetadata, UnevaluatedConstEvaluatorFolder},
    AliasEq, AliasTy, Binders, ClosureId, Const, DomainGoal, GenericArg, Goal, ImplTraitId,
    ImplTraitIdx, InEnvironment, Interner, Lifetime, OpaqueTyId, ProjectionTy, Substitution,
    TraitEnvironment, Ty, TyBuilder, TyExt,
};

// This lint has a false positive here. See the link below for details.
//
// https://github.com/rust-lang/rust/issues/57411
#[allow(unreachable_pub)]
pub use coerce::could_coerce;
#[allow(unreachable_pub)]
pub use unify::{could_unify, could_unify_deeply};

use cast::CastCheck;
pub(crate) use closure::{CaptureKind, CapturedItem, CapturedItemWithoutTy};

/// The entry point of type inference.
pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
    let _p = tracing::span!(tracing::Level::INFO, "infer_query").entered();
    let resolver = def.resolver(db.upcast());
    let body = db.body(def);
    let mut ctx = InferenceContext::new(db, def, &body, resolver);

    match def {
        DefWithBodyId::FunctionId(f) => {
            ctx.collect_fn(f);
        }
        DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
        DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_data(s)),
        DefWithBodyId::VariantId(v) => {
            ctx.return_ty = TyBuilder::builtin(
                match db.enum_data(v.lookup(db.upcast()).parent).variant_body_type() {
                    hir_def::layout::IntegerType::Pointer(signed) => match signed {
                        true => BuiltinType::Int(BuiltinInt::Isize),
                        false => BuiltinType::Uint(BuiltinUint::Usize),
                    },
                    hir_def::layout::IntegerType::Fixed(size, signed) => match signed {
                        true => BuiltinType::Int(match size {
                            Integer::I8 => BuiltinInt::I8,
                            Integer::I16 => BuiltinInt::I16,
                            Integer::I32 => BuiltinInt::I32,
                            Integer::I64 => BuiltinInt::I64,
                            Integer::I128 => BuiltinInt::I128,
                        }),
                        false => BuiltinType::Uint(match size {
                            Integer::I8 => BuiltinUint::U8,
                            Integer::I16 => BuiltinUint::U16,
                            Integer::I32 => BuiltinUint::U32,
                            Integer::I64 => BuiltinUint::U64,
                            Integer::I128 => BuiltinUint::U128,
                        }),
                    },
                },
            );
        }
        DefWithBodyId::InTypeConstId(c) => {
            // FIXME(const-generic-body): We should not get the return type in this way.
            ctx.return_ty = c
                .lookup(db.upcast())
                .expected_ty
                .box_any()
                .downcast::<InTypeConstIdMetadata>()
                .unwrap()
                .0;
        }
    }

    ctx.infer_body();

    ctx.infer_mut_body();

    ctx.infer_closures();

    Arc::new(ctx.resolve_all())
}

/// Fully normalize all the types found within `ty` in context of `owner` body definition.
///
/// This is appropriate to use only after type-check: it assumes
/// that normalization will succeed, for example.
pub(crate) fn normalize(db: &dyn HirDatabase, trait_env: Arc<TraitEnvironment>, ty: Ty) -> Ty {
    // FIXME: TypeFlags::HAS_CT_PROJECTION is not implemented in chalk, so TypeFlags::HAS_PROJECTION only
    // works for the type case, so we check array unconditionally. Remove the array part
    // when the bug in chalk becomes fixed.
    if !ty.data(Interner).flags.intersects(TypeFlags::HAS_PROJECTION)
        && !matches!(ty.kind(Interner), TyKind::Array(..))
    {
        return ty;
    }
    let mut table = unify::InferenceTable::new(db, trait_env);

    let ty_with_vars = table.normalize_associated_types_in(ty);
    table.resolve_obligations_as_possible();
    table.propagate_diverging_flag();
    table.resolve_completely(ty_with_vars)
}

/// Binding modes inferred for patterns.
/// <https://doc.rust-lang.org/reference/patterns.html#binding-modes>
#[derive(Copy, Clone, Debug, Eq, PartialEq, Default)]
pub enum BindingMode {
    #[default]
    Move,
    Ref(Mutability),
}

impl BindingMode {
    fn convert(annotation: BindingAnnotation) -> BindingMode {
        match annotation {
            BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
            BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not),
            BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
        }
    }
}

#[derive(Debug)]
pub(crate) struct InferOk<T> {
    value: T,
    goals: Vec<InEnvironment<Goal>>,
}

impl<T> InferOk<T> {
    fn map<U>(self, f: impl FnOnce(T) -> U) -> InferOk<U> {
        InferOk { value: f(self.value), goals: self.goals }
    }
}

#[derive(Debug)]
pub(crate) struct TypeError;
pub(crate) type InferResult<T> = Result<InferOk<T>, TypeError>;

#[derive(Debug, PartialEq, Eq, Clone)]
pub enum InferenceDiagnostic {
    NoSuchField {
        field: ExprOrPatId,
        private: bool,
    },
    PrivateField {
        expr: ExprId,
        field: FieldId,
    },
    PrivateAssocItem {
        id: ExprOrPatId,
        item: AssocItemId,
    },
    UnresolvedField {
        expr: ExprId,
        receiver: Ty,
        name: Name,
        method_with_same_name_exists: bool,
    },
    UnresolvedMethodCall {
        expr: ExprId,
        receiver: Ty,
        name: Name,
        /// Contains the type the field resolves to
        field_with_same_name: Option<Ty>,
        assoc_func_with_same_name: Option<AssocItemId>,
    },
    UnresolvedAssocItem {
        id: ExprOrPatId,
    },
    UnresolvedIdent {
        expr: ExprId,
    },
    // FIXME: This should be emitted in body lowering
    BreakOutsideOfLoop {
        expr: ExprId,
        is_break: bool,
        bad_value_break: bool,
    },
    MismatchedArgCount {
        call_expr: ExprId,
        expected: usize,
        found: usize,
    },
    MismatchedTupleStructPatArgCount {
        pat: ExprOrPatId,
        expected: usize,
        found: usize,
    },
    ExpectedFunction {
        call_expr: ExprId,
        found: Ty,
    },
    TypedHole {
        expr: ExprId,
        expected: Ty,
    },
}

/// A mismatch between an expected and an inferred type.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TypeMismatch {
    pub expected: Ty,
    pub actual: Ty,
}

#[derive(Clone, PartialEq, Eq, Debug)]
struct InternedStandardTypes {
    unknown: Ty,
    bool_: Ty,
    unit: Ty,
    never: Ty,
}

impl Default for InternedStandardTypes {
    fn default() -> Self {
        InternedStandardTypes {
            unknown: TyKind::Error.intern(Interner),
            bool_: TyKind::Scalar(Scalar::Bool).intern(Interner),
            unit: TyKind::Tuple(0, Substitution::empty(Interner)).intern(Interner),
            never: TyKind::Never.intern(Interner),
        }
    }
}
/// Represents coercing a value to a different type of value.
///
/// We transform values by following a number of `Adjust` steps in order.
/// See the documentation on variants of `Adjust` for more details.
///
/// Here are some common scenarios:
///
/// 1. The simplest cases are where a pointer is not adjusted fat vs thin.
///    Here the pointer will be dereferenced N times (where a dereference can
///    happen to raw or borrowed pointers or any smart pointer which implements
///    Deref, including Box<_>). The types of dereferences is given by
///    `autoderefs`. It can then be auto-referenced zero or one times, indicated
///    by `autoref`, to either a raw or borrowed pointer. In these cases unsize is
///    `false`.
///
/// 2. A thin-to-fat coercion involves unsizing the underlying data. We start
///    with a thin pointer, deref a number of times, unsize the underlying data,
///    then autoref. The 'unsize' phase may change a fixed length array to a
///    dynamically sized one, a concrete object to a trait object, or statically
///    sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is
///    represented by:
///
///    ```
///    Deref(None) -> [i32; 4],
///    Borrow(AutoBorrow::Ref) -> &[i32; 4],
///    Unsize -> &[i32],
///    ```
///
///    Note that for a struct, the 'deep' unsizing of the struct is not recorded.
///    E.g., `struct Foo<T> { it: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]>
///    The autoderef and -ref are the same as in the above example, but the type
///    stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about
///    the underlying conversions from `[i32; 4]` to `[i32]`.
///
/// 3. Coercing a `Box<T>` to `Box<dyn Trait>` is an interesting special case. In
///    that case, we have the pointer we need coming in, so there are no
///    autoderefs, and no autoref. Instead we just do the `Unsize` transformation.
///    At some point, of course, `Box` should move out of the compiler, in which
///    case this is analogous to transforming a struct. E.g., Box<[i32; 4]> ->
///    Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct Adjustment {
    pub kind: Adjust,
    pub target: Ty,
}

impl Adjustment {
    pub fn borrow(m: Mutability, ty: Ty) -> Self {
        let ty = TyKind::Ref(m, static_lifetime(), ty).intern(Interner);
        Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(m)), target: ty }
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum Adjust {
    /// Go from ! to any type.
    NeverToAny,
    /// Dereference once, producing a place.
    Deref(Option<OverloadedDeref>),
    /// Take the address and produce either a `&` or `*` pointer.
    Borrow(AutoBorrow),
    Pointer(PointerCast),
}

/// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)`
/// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`.
/// The target type is `U` in both cases, with the region and mutability
/// being those shared by both the receiver and the returned reference.
///
/// Mutability is `None` when we are not sure.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct OverloadedDeref(pub Option<Mutability>);

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum AutoBorrow {
    /// Converts from T to &T.
    Ref(Mutability),
    /// Converts from T to *T.
    RawPtr(Mutability),
}

impl AutoBorrow {
    fn mutability(self) -> Mutability {
        let (AutoBorrow::Ref(m) | AutoBorrow::RawPtr(m)) = self;
        m
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum PointerCast {
    /// Go from a fn-item type to a fn-pointer type.
    ReifyFnPointer,

    /// Go from a safe fn pointer to an unsafe fn pointer.
    UnsafeFnPointer,

    /// Go from a non-capturing closure to an fn pointer or an unsafe fn pointer.
    /// It cannot convert a closure that requires unsafe.
    ClosureFnPointer(Safety),

    /// Go from a mut raw pointer to a const raw pointer.
    MutToConstPointer,

    #[allow(dead_code)]
    /// Go from `*const [T; N]` to `*const T`
    ArrayToPointer,

    /// Unsize a pointer/reference value, e.g., `&[T; n]` to
    /// `&[T]`. Note that the source could be a thin or fat pointer.
    /// This will do things like convert thin pointers to fat
    /// pointers, or convert structs containing thin pointers to
    /// structs containing fat pointers, or convert between fat
    /// pointers. We don't store the details of how the transform is
    /// done (in fact, we don't know that, because it might depend on
    /// the precise type parameters). We just store the target
    /// type. Codegen backends and miri figure out what has to be done
    /// based on the precise source/target type at hand.
    Unsize,
}

/// The result of type inference: A mapping from expressions and patterns to types.
///
/// When you add a field that stores types (including `Substitution` and the like), don't forget
/// `resolve_completely()`'ing  them in `InferenceContext::resolve_all()`. Inference variables must
/// not appear in the final inference result.
#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct InferenceResult {
    /// For each method call expr, records the function it resolves to.
    method_resolutions: FxHashMap<ExprId, (FunctionId, Substitution)>,
    /// For each field access expr, records the field it resolves to.
    field_resolutions: FxHashMap<ExprId, Either<FieldId, TupleFieldId>>,
    /// For each struct literal or pattern, records the variant it resolves to.
    variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
    /// For each associated item record what it resolves to
    assoc_resolutions: FxHashMap<ExprOrPatId, (AssocItemId, Substitution)>,
    /// Whenever a tuple field expression access a tuple field, we allocate a tuple id in
    /// [`InferenceContext`] and store the tuples substitution there. This map is the reverse of
    /// that which allows us to resolve a [`TupleFieldId`]s type.
    pub tuple_field_access_types: FxHashMap<TupleId, Substitution>,
    pub diagnostics: Vec<InferenceDiagnostic>,
    pub type_of_expr: ArenaMap<ExprId, Ty>,
    /// For each pattern record the type it resolves to.
    ///
    /// **Note**: When a pattern type is resolved it may still contain
    /// unresolved or missing subpatterns or subpatterns of mismatched types.
    pub type_of_pat: ArenaMap<PatId, Ty>,
    pub type_of_binding: ArenaMap<BindingId, Ty>,
    pub type_of_rpit: ArenaMap<ImplTraitIdx, Ty>,
    /// Type of the result of `.into_iter()` on the for. `ExprId` is the one of the whole for loop.
    pub type_of_for_iterator: FxHashMap<ExprId, Ty>,
    type_mismatches: FxHashMap<ExprOrPatId, TypeMismatch>,
    /// Interned common types to return references to.
    standard_types: InternedStandardTypes,
    /// Stores the types which were implicitly dereferenced in pattern binding modes.
    pub pat_adjustments: FxHashMap<PatId, Vec<Ty>>,
    /// Stores the binding mode (`ref` in `let ref x = 2`) of bindings.
    ///
    /// This one is tied to the `PatId` instead of `BindingId`, because in some rare cases, a binding in an
    /// or pattern can have multiple binding modes. For example:
    /// ```
    /// fn foo(mut slice: &[u32]) -> usize {
    ///    slice = match slice {
    ///        [0, rest @ ..] | rest => rest,
    ///    };
    /// }
    /// ```
    /// the first `rest` has implicit `ref` binding mode, but the second `rest` binding mode is `move`.
    pub binding_modes: ArenaMap<PatId, BindingMode>,
    pub expr_adjustments: FxHashMap<ExprId, Vec<Adjustment>>,
    pub(crate) closure_info: FxHashMap<ClosureId, (Vec<CapturedItem>, FnTrait)>,
    // FIXME: remove this field
    pub mutated_bindings_in_closure: FxHashSet<BindingId>,
}

impl InferenceResult {
    pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, Substitution)> {
        self.method_resolutions.get(&expr).cloned()
    }
    pub fn field_resolution(&self, expr: ExprId) -> Option<Either<FieldId, TupleFieldId>> {
        self.field_resolutions.get(&expr).copied()
    }
    pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
        self.variant_resolutions.get(&id.into()).copied()
    }
    pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
        self.variant_resolutions.get(&id.into()).copied()
    }
    pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<(AssocItemId, Substitution)> {
        self.assoc_resolutions.get(&id.into()).cloned()
    }
    pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<(AssocItemId, Substitution)> {
        self.assoc_resolutions.get(&id.into()).cloned()
    }
    pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
        self.type_mismatches.get(&expr.into())
    }
    pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch> {
        self.type_mismatches.get(&pat.into())
    }
    pub fn type_mismatches(&self) -> impl Iterator<Item = (ExprOrPatId, &TypeMismatch)> {
        self.type_mismatches.iter().map(|(expr_or_pat, mismatch)| (*expr_or_pat, mismatch))
    }
    pub fn expr_type_mismatches(&self) -> impl Iterator<Item = (ExprId, &TypeMismatch)> {
        self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
            ExprOrPatId::ExprId(expr) => Some((expr, mismatch)),
            _ => None,
        })
    }
    pub fn closure_info(&self, closure: &ClosureId) -> &(Vec<CapturedItem>, FnTrait) {
        self.closure_info.get(closure).unwrap()
    }
}

impl Index<ExprId> for InferenceResult {
    type Output = Ty;

    fn index(&self, expr: ExprId) -> &Ty {
        self.type_of_expr.get(expr).unwrap_or(&self.standard_types.unknown)
    }
}

impl Index<PatId> for InferenceResult {
    type Output = Ty;

    fn index(&self, pat: PatId) -> &Ty {
        self.type_of_pat.get(pat).unwrap_or(&self.standard_types.unknown)
    }
}

impl Index<BindingId> for InferenceResult {
    type Output = Ty;

    fn index(&self, b: BindingId) -> &Ty {
        self.type_of_binding.get(b).unwrap_or(&self.standard_types.unknown)
    }
}

/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
pub(crate) struct InferenceContext<'a> {
    pub(crate) db: &'a dyn HirDatabase,
    pub(crate) owner: DefWithBodyId,
    pub(crate) body: &'a Body,
    pub(crate) resolver: Resolver,
    table: unify::InferenceTable<'a>,
    /// The traits in scope, disregarding block modules. This is used for caching purposes.
    traits_in_scope: FxHashSet<TraitId>,
    pub(crate) result: InferenceResult,
    tuple_field_accesses_rev:
        IndexSet<Substitution, std::hash::BuildHasherDefault<rustc_hash::FxHasher>>,
    /// The return type of the function being inferred, the closure or async block if we're
    /// currently within one.
    ///
    /// We might consider using a nested inference context for checking
    /// closures so we can swap all shared things out at once.
    return_ty: Ty,
    /// If `Some`, this stores coercion information for returned
    /// expressions. If `None`, this is in a context where return is
    /// inappropriate, such as a const expression.
    return_coercion: Option<CoerceMany>,
    /// The resume type and the yield type, respectively, of the coroutine being inferred.
    resume_yield_tys: Option<(Ty, Ty)>,
    diverges: Diverges,
    breakables: Vec<BreakableContext>,

    deferred_cast_checks: Vec<CastCheck>,

    // fields related to closure capture
    current_captures: Vec<CapturedItemWithoutTy>,
    current_closure: Option<ClosureId>,
    /// Stores the list of closure ids that need to be analyzed before this closure. See the
    /// comment on `InferenceContext::sort_closures`
    closure_dependencies: FxHashMap<ClosureId, Vec<ClosureId>>,
    deferred_closures: FxHashMap<ClosureId, Vec<(Ty, Ty, Vec<Ty>, ExprId)>>,
}

#[derive(Clone, Debug)]
struct BreakableContext {
    /// Whether this context contains at least one break expression.
    may_break: bool,
    /// The coercion target of the context.
    coerce: Option<CoerceMany>,
    /// The optional label of the context.
    label: Option<LabelId>,
    kind: BreakableKind,
}

#[derive(Clone, Debug)]
enum BreakableKind {
    Block,
    Loop,
    /// A border is something like an async block, closure etc. Anything that prevents
    /// breaking/continuing through
    Border,
}

fn find_breakable(
    ctxs: &mut [BreakableContext],
    label: Option<LabelId>,
) -> Option<&mut BreakableContext> {
    let mut ctxs = ctxs
        .iter_mut()
        .rev()
        .take_while(|it| matches!(it.kind, BreakableKind::Block | BreakableKind::Loop));
    match label {
        Some(_) => ctxs.find(|ctx| ctx.label == label),
        None => ctxs.find(|ctx| matches!(ctx.kind, BreakableKind::Loop)),
    }
}

fn find_continuable(
    ctxs: &mut [BreakableContext],
    label: Option<LabelId>,
) -> Option<&mut BreakableContext> {
    match label {
        Some(_) => find_breakable(ctxs, label).filter(|it| matches!(it.kind, BreakableKind::Loop)),
        None => find_breakable(ctxs, label),
    }
}

impl<'a> InferenceContext<'a> {
    fn new(
        db: &'a dyn HirDatabase,
        owner: DefWithBodyId,
        body: &'a Body,
        resolver: Resolver,
    ) -> Self {
        let trait_env = db.trait_environment_for_body(owner);
        InferenceContext {
            result: InferenceResult::default(),
            table: unify::InferenceTable::new(db, trait_env),
            tuple_field_accesses_rev: Default::default(),
            return_ty: TyKind::Error.intern(Interner), // set in collect_* calls
            resume_yield_tys: None,
            return_coercion: None,
            db,
            owner,
            body,
            traits_in_scope: resolver.traits_in_scope(db.upcast()),
            resolver,
            diverges: Diverges::Maybe,
            breakables: Vec::new(),
            deferred_cast_checks: Vec::new(),
            current_captures: Vec::new(),
            current_closure: None,
            deferred_closures: FxHashMap::default(),
            closure_dependencies: FxHashMap::default(),
        }
    }

    // FIXME: This function should be private in module. It is currently only used in the consteval, since we need
    // `InferenceResult` in the middle of inference. See the fixme comment in `consteval::eval_to_const`. If you
    // used this function for another workaround, mention it here. If you really need this function and believe that
    // there is no problem in it being `pub(crate)`, remove this comment.
    pub(crate) fn resolve_all(self) -> InferenceResult {
        let InferenceContext {
            mut table,
            mut result,
            deferred_cast_checks,
            tuple_field_accesses_rev,
            ..
        } = self;
        // Destructure every single field so whenever new fields are added to `InferenceResult` we
        // don't forget to handle them here.
        let InferenceResult {
            method_resolutions,
            field_resolutions: _,
            variant_resolutions: _,
            assoc_resolutions,
            diagnostics,
            type_of_expr,
            type_of_pat,
            type_of_binding,
            type_of_rpit,
            type_of_for_iterator,
            type_mismatches,
            standard_types: _,
            pat_adjustments,
            binding_modes: _,
            expr_adjustments,
            // Types in `closure_info` have already been `resolve_completely()`'d during
            // `InferenceContext::infer_closures()` (in `HirPlace::ty()` specifically), so no need
            // to resolve them here.
            closure_info: _,
            mutated_bindings_in_closure: _,
            tuple_field_access_types: _,
        } = &mut result;

        table.fallback_if_possible();

        // Comment from rustc:
        // Even though coercion casts provide type hints, we check casts after fallback for
        // backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
        for cast in deferred_cast_checks {
            cast.check(&mut table);
        }

        // FIXME resolve obligations as well (use Guidance if necessary)
        table.resolve_obligations_as_possible();

        // make sure diverging type variables are marked as such
        table.propagate_diverging_flag();
        for ty in type_of_expr.values_mut() {
            *ty = table.resolve_completely(ty.clone());
        }
        for ty in type_of_pat.values_mut() {
            *ty = table.resolve_completely(ty.clone());
        }
        for ty in type_of_binding.values_mut() {
            *ty = table.resolve_completely(ty.clone());
        }
        for ty in type_of_rpit.values_mut() {
            *ty = table.resolve_completely(ty.clone());
        }
        for ty in type_of_for_iterator.values_mut() {
            *ty = table.resolve_completely(ty.clone());
        }
        type_mismatches.retain(|_, mismatch| {
            mismatch.expected = table.resolve_completely(mismatch.expected.clone());
            mismatch.actual = table.resolve_completely(mismatch.actual.clone());
            chalk_ir::zip::Zip::zip_with(
                &mut UnknownMismatch(self.db),
                Variance::Invariant,
                &mismatch.expected,
                &mismatch.actual,
            )
            .is_ok()
        });
        diagnostics.retain_mut(|diagnostic| {
            use InferenceDiagnostic::*;
            match diagnostic {
                ExpectedFunction { found: ty, .. }
                | UnresolvedField { receiver: ty, .. }
                | UnresolvedMethodCall { receiver: ty, .. } => {
                    *ty = table.resolve_completely(ty.clone());
                    // FIXME: Remove this when we are on par with rustc in terms of inference
                    if ty.contains_unknown() {
                        return false;
                    }

                    if let UnresolvedMethodCall { field_with_same_name, .. } = diagnostic {
                        if let Some(ty) = field_with_same_name {
                            *ty = table.resolve_completely(ty.clone());
                            if ty.contains_unknown() {
                                *field_with_same_name = None;
                            }
                        }
                    }
                }
                TypedHole { expected: ty, .. } => {
                    *ty = table.resolve_completely(ty.clone());
                }
                _ => (),
            }
            true
        });
        for (_, subst) in method_resolutions.values_mut() {
            *subst = table.resolve_completely(subst.clone());
        }
        for (_, subst) in assoc_resolutions.values_mut() {
            *subst = table.resolve_completely(subst.clone());
        }
        for adjustment in expr_adjustments.values_mut().flatten() {
            adjustment.target = table.resolve_completely(adjustment.target.clone());
        }
        for adjustment in pat_adjustments.values_mut().flatten() {
            *adjustment = table.resolve_completely(adjustment.clone());
        }
        result.tuple_field_access_types = tuple_field_accesses_rev
            .into_iter()
            .enumerate()
            .map(|(idx, subst)| (TupleId(idx as u32), table.resolve_completely(subst)))
            .collect();
        result
    }

    fn collect_const(&mut self, data: &ConstData) {
        let return_ty = self.make_ty(&data.type_ref);

        // Constants might be associated items that define ATPITs.
        self.insert_atpit_coercion_table(iter::once(&return_ty));

        self.return_ty = return_ty;
    }

    fn collect_static(&mut self, data: &StaticData) {
        self.return_ty = self.make_ty(&data.type_ref);
    }

    fn collect_fn(&mut self, func: FunctionId) {
        let data = self.db.function_data(func);
        let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, func.into())
            .with_impl_trait_mode(ImplTraitLoweringMode::Param);
        let mut param_tys =
            data.params.iter().map(|type_ref| ctx.lower_ty(type_ref)).collect::<Vec<_>>();
        // Check if function contains a va_list, if it does then we append it to the parameter types
        // that are collected from the function data
        if data.is_varargs() {
            let va_list_ty = match self.resolve_va_list() {
                Some(va_list) => TyBuilder::adt(self.db, va_list)
                    .fill_with_defaults(self.db, || self.table.new_type_var())
                    .build(),
                None => self.err_ty(),
            };

            param_tys.push(va_list_ty)
        }
        let mut param_tys = param_tys.into_iter().chain(iter::repeat(self.table.new_type_var()));
        if let Some(self_param) = self.body.self_param {
            if let Some(ty) = param_tys.next() {
                let ty = self.insert_type_vars(ty);
                let ty = self.normalize_associated_types_in(ty);
                self.write_binding_ty(self_param, ty);
            }
        }
        let mut params_and_ret_tys = Vec::new();
        for (ty, pat) in param_tys.zip(&*self.body.params) {
            let ty = self.insert_type_vars(ty);
            let ty = self.normalize_associated_types_in(ty);

            self.infer_top_pat(*pat, &ty);
            params_and_ret_tys.push(ty);
        }
        let return_ty = &*data.ret_type;

        let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into())
            .with_impl_trait_mode(ImplTraitLoweringMode::Opaque);
        let return_ty = ctx.lower_ty(return_ty);
        let return_ty = self.insert_type_vars(return_ty);

        let return_ty = if let Some(rpits) = self.db.return_type_impl_traits(func) {
            // RPIT opaque types use substitution of their parent function.
            let fn_placeholders = TyBuilder::placeholder_subst(self.db, func);
            let result = self.insert_inference_vars_for_impl_trait(
                return_ty,
                rpits.clone(),
                fn_placeholders,
            );
            let rpits = rpits.skip_binders();
            for (id, _) in rpits.impl_traits.iter() {
                if let Entry::Vacant(e) = self.result.type_of_rpit.entry(id) {
                    never!("Missed RPIT in `insert_inference_vars_for_rpit`");
                    e.insert(TyKind::Error.intern(Interner));
                }
            }
            result
        } else {
            return_ty
        };

        self.return_ty = self.normalize_associated_types_in(return_ty);
        self.return_coercion = Some(CoerceMany::new(self.return_ty.clone()));

        // Functions might be associated items that define ATPITs.
        // To define an ATPITs, that ATPIT must appear in the function's signatures.
        // So, it suffices to check for params and return types.
        params_and_ret_tys.push(self.return_ty.clone());
        self.insert_atpit_coercion_table(params_and_ret_tys.iter());
    }

    fn insert_inference_vars_for_impl_trait<T>(
        &mut self,
        t: T,
        rpits: Arc<chalk_ir::Binders<crate::ImplTraits>>,
        placeholders: Substitution,
    ) -> T
    where
        T: crate::HasInterner<Interner = Interner> + crate::TypeFoldable<Interner>,
    {
        fold_tys(
            t,
            |ty, _| {
                let opaque_ty_id = match ty.kind(Interner) {
                    TyKind::OpaqueType(opaque_ty_id, _) => *opaque_ty_id,
                    _ => return ty,
                };
                let idx = match self.db.lookup_intern_impl_trait_id(opaque_ty_id.into()) {
                    ImplTraitId::ReturnTypeImplTrait(_, idx) => idx,
                    ImplTraitId::AssociatedTypeImplTrait(_, idx) => idx,
                    _ => unreachable!(),
                };
                let bounds =
                    (*rpits).map_ref(|rpits| rpits.impl_traits[idx].bounds.map_ref(|it| it.iter()));
                let var = self.table.new_type_var();
                let var_subst = Substitution::from1(Interner, var.clone());
                for bound in bounds {
                    let predicate = bound.map(|it| it.cloned()).substitute(Interner, &placeholders);
                    let (var_predicate, binders) =
                        predicate.substitute(Interner, &var_subst).into_value_and_skipped_binders();
                    always!(binders.is_empty(Interner)); // quantified where clauses not yet handled
                    let var_predicate = self.insert_inference_vars_for_impl_trait(
                        var_predicate,
                        rpits.clone(),
                        placeholders.clone(),
                    );
                    self.push_obligation(var_predicate.cast(Interner));
                }
                self.result.type_of_rpit.insert(idx, var.clone());
                var
            },
            DebruijnIndex::INNERMOST,
        )
    }

    /// The coercion of a non-inference var into an opaque type should fail,
    /// but not in the defining sites of the ATPITs.
    /// In such cases, we insert an proxy inference var for each ATPIT,
    /// and coerce into it instead of ATPIT itself.
    ///
    /// The inference var stretagy is effective because;
    ///
    /// - It can still unify types that coerced into ATPIT
    /// - We are pushing `impl Trait` bounds into it
    ///
    /// This function inserts a map that maps the opaque type to that proxy inference var.
    fn insert_atpit_coercion_table<'b>(&mut self, tys: impl Iterator<Item = &'b Ty>) {
        struct OpaqueTyCollector<'a, 'b> {
            table: &'b mut InferenceTable<'a>,
            opaque_tys: FxHashMap<OpaqueTyId, Ty>,
        }

        impl<'a, 'b> TypeVisitor<Interner> for OpaqueTyCollector<'a, 'b> {
            type BreakTy = ();

            fn as_dyn(&mut self) -> &mut dyn TypeVisitor<Interner, BreakTy = Self::BreakTy> {
                self
            }

            fn interner(&self) -> Interner {
                Interner
            }

            fn visit_ty(
                &mut self,
                ty: &chalk_ir::Ty<Interner>,
                outer_binder: DebruijnIndex,
            ) -> std::ops::ControlFlow<Self::BreakTy> {
                let ty = self.table.resolve_ty_shallow(ty);

                if let TyKind::OpaqueType(id, _) = ty.kind(Interner) {
                    self.opaque_tys.insert(*id, ty.clone());
                }

                ty.super_visit_with(self, outer_binder)
            }
        }

        // Early return if this is not happening inside the impl block
        let impl_id = if let Some(impl_id) = self.resolver.impl_def() {
            impl_id
        } else {
            return;
        };

        let assoc_tys: FxHashSet<_> = self
            .db
            .impl_data(impl_id)
            .items
            .iter()
            .filter_map(|item| match item {
                AssocItemId::TypeAliasId(alias) => Some(*alias),
                _ => None,
            })
            .collect();
        if assoc_tys.is_empty() {
            return;
        }

        let mut collector =
            OpaqueTyCollector { table: &mut self.table, opaque_tys: FxHashMap::default() };
        for ty in tys {
            ty.visit_with(collector.as_dyn(), DebruijnIndex::INNERMOST);
        }
        let atpit_coercion_table: FxHashMap<_, _> = collector
            .opaque_tys
            .into_iter()
            .filter_map(|(opaque_ty_id, ty)| {
                if let ImplTraitId::AssociatedTypeImplTrait(alias_id, _) =
                    self.db.lookup_intern_impl_trait_id(opaque_ty_id.into())
                {
                    if assoc_tys.contains(&alias_id) {
                        let atpits = self
                            .db
                            .type_alias_impl_traits(alias_id)
                            .expect("Marked as ATPIT but no impl traits!");
                        let alias_placeholders = TyBuilder::placeholder_subst(self.db, alias_id);
                        let ty = self.insert_inference_vars_for_impl_trait(
                            ty,
                            atpits,
                            alias_placeholders,
                        );
                        return Some((opaque_ty_id, ty));
                    }
                }

                None
            })
            .collect();

        if !atpit_coercion_table.is_empty() {
            self.table.atpit_coercion_table = Some(atpit_coercion_table);
        }
    }

    fn infer_body(&mut self) {
        match self.return_coercion {
            Some(_) => self.infer_return(self.body.body_expr),
            None => {
                _ = self.infer_expr_coerce(
                    self.body.body_expr,
                    &Expectation::has_type(self.return_ty.clone()),
                )
            }
        }
    }

    fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
        self.result.type_of_expr.insert(expr, ty);
    }

    fn write_expr_adj(&mut self, expr: ExprId, adjustments: Vec<Adjustment>) {
        self.result.expr_adjustments.insert(expr, adjustments);
    }

    fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: Substitution) {
        self.result.method_resolutions.insert(expr, (func, subst));
    }

    fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
        self.result.variant_resolutions.insert(id, variant);
    }

    fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId, subs: Substitution) {
        self.result.assoc_resolutions.insert(id, (item, subs));
    }

    fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
        self.result.type_of_pat.insert(pat, ty);
    }

    fn write_binding_ty(&mut self, id: BindingId, ty: Ty) {
        self.result.type_of_binding.insert(id, ty);
    }

    fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
        self.result.diagnostics.push(diagnostic);
    }

    fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
        let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into());
        let ty = ctx.lower_ty(type_ref);
        let ty = self.insert_type_vars(ty);
        self.normalize_associated_types_in(ty)
    }

    fn err_ty(&self) -> Ty {
        self.result.standard_types.unknown.clone()
    }

    /// Replaces `Ty::Error` by a new type var, so we can maybe still infer it.
    fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
        self.table.insert_type_vars_shallow(ty)
    }

    fn insert_type_vars<T>(&mut self, ty: T) -> T
    where
        T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
    {
        self.table.insert_type_vars(ty)
    }

    fn push_obligation(&mut self, o: DomainGoal) {
        self.table.register_obligation(o.cast(Interner));
    }

    fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
        let ty1 = ty1
            .clone()
            .try_fold_with(
                &mut UnevaluatedConstEvaluatorFolder { db: self.db },
                DebruijnIndex::INNERMOST,
            )
            .unwrap();
        let ty2 = ty2
            .clone()
            .try_fold_with(
                &mut UnevaluatedConstEvaluatorFolder { db: self.db },
                DebruijnIndex::INNERMOST,
            )
            .unwrap();
        self.table.unify(&ty1, &ty2)
    }

    /// Attempts to returns the deeply last field of nested structures, but
    /// does not apply any normalization in its search. Returns the same type
    /// if input `ty` is not a structure at all.
    fn struct_tail_without_normalization(&mut self, ty: Ty) -> Ty {
        self.struct_tail_with_normalize(ty, identity)
    }

    /// Returns the deeply last field of nested structures, or the same type if
    /// not a structure at all. Corresponds to the only possible unsized field,
    /// and its type can be used to determine unsizing strategy.
    ///
    /// This is parameterized over the normalization strategy (i.e. how to
    /// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity
    /// function to indicate no normalization should take place.
    fn struct_tail_with_normalize(
        &mut self,
        mut ty: Ty,
        mut normalize: impl FnMut(Ty) -> Ty,
    ) -> Ty {
        // FIXME: fetch the limit properly
        let recursion_limit = 10;
        for iteration in 0.. {
            if iteration > recursion_limit {
                return self.err_ty();
            }
            match ty.kind(Interner) {
                TyKind::Adt(chalk_ir::AdtId(hir_def::AdtId::StructId(struct_id)), substs) => {
                    match self.db.field_types((*struct_id).into()).values().next_back().cloned() {
                        Some(field) => {
                            ty = field.substitute(Interner, substs);
                        }
                        None => break,
                    }
                }
                TyKind::Adt(..) => break,
                TyKind::Tuple(_, substs) => {
                    match substs
                        .as_slice(Interner)
                        .split_last()
                        .and_then(|(last_ty, _)| last_ty.ty(Interner))
                    {
                        Some(last_ty) => ty = last_ty.clone(),
                        None => break,
                    }
                }
                TyKind::Alias(..) => {
                    let normalized = normalize(ty.clone());
                    if ty == normalized {
                        return ty;
                    } else {
                        ty = normalized;
                    }
                }
                _ => break,
            }
        }
        ty
    }

    /// Recurses through the given type, normalizing associated types mentioned
    /// in it by replacing them by type variables and registering obligations to
    /// resolve later. This should be done once for every type we get from some
    /// type annotation (e.g. from a let type annotation, field type or function
    /// call). `make_ty` handles this already, but e.g. for field types we need
    /// to do it as well.
    fn normalize_associated_types_in<T>(&mut self, ty: T) -> T
    where
        T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
    {
        self.table.normalize_associated_types_in(ty)
    }

    fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
        self.table.resolve_ty_shallow(ty)
    }

    fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option<TypeAliasId>) -> Ty {
        self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[])
    }

    fn resolve_associated_type_with_params(
        &mut self,
        inner_ty: Ty,
        assoc_ty: Option<TypeAliasId>,
        // FIXME(GATs): these are args for the trait ref, args for assoc type itself should be
        // handled when we support them.
        params: &[GenericArg],
    ) -> Ty {
        match assoc_ty {
            Some(res_assoc_ty) => {
                let trait_ = match res_assoc_ty.lookup(self.db.upcast()).container {
                    hir_def::ItemContainerId::TraitId(trait_) => trait_,
                    _ => panic!("resolve_associated_type called with non-associated type"),
                };
                let ty = self.table.new_type_var();
                let mut param_iter = params.iter().cloned();
                let trait_ref = TyBuilder::trait_ref(self.db, trait_)
                    .push(inner_ty)
                    .fill(|_| param_iter.next().unwrap())
                    .build();
                let alias_eq = AliasEq {
                    alias: AliasTy::Projection(ProjectionTy {
                        associated_ty_id: to_assoc_type_id(res_assoc_ty),
                        substitution: trait_ref.substitution.clone(),
                    }),
                    ty: ty.clone(),
                };
                self.push_obligation(trait_ref.cast(Interner));
                self.push_obligation(alias_eq.cast(Interner));
                ty
            }
            None => self.err_ty(),
        }
    }

    fn resolve_variant(&mut self, path: Option<&Path>, value_ns: bool) -> (Ty, Option<VariantId>) {
        let path = match path {
            Some(path) => path,
            None => return (self.err_ty(), None),
        };
        let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into());
        let (resolution, unresolved) = if value_ns {
            match self.resolver.resolve_path_in_value_ns(self.db.upcast(), path) {
                Some(ResolveValueResult::ValueNs(value, _)) => match value {
                    ValueNs::EnumVariantId(var) => {
                        let substs = ctx.substs_from_path(path, var.into(), true);
                        let ty = self.db.ty(var.lookup(self.db.upcast()).parent.into());
                        let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                        return (ty, Some(var.into()));
                    }
                    ValueNs::StructId(strukt) => {
                        let substs = ctx.substs_from_path(path, strukt.into(), true);
                        let ty = self.db.ty(strukt.into());
                        let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                        return (ty, Some(strukt.into()));
                    }
                    ValueNs::ImplSelf(impl_id) => (TypeNs::SelfType(impl_id), None),
                    _ => return (self.err_ty(), None),
                },
                Some(ResolveValueResult::Partial(typens, unresolved, _)) => {
                    (typens, Some(unresolved))
                }
                None => return (self.err_ty(), None),
            }
        } else {
            match self.resolver.resolve_path_in_type_ns(self.db.upcast(), path) {
                Some((it, idx, _)) => (it, idx),
                None => return (self.err_ty(), None),
            }
        };
        let Some(mod_path) = path.mod_path() else {
            never!("resolver should always resolve lang item paths");
            return (self.err_ty(), None);
        };
        return match resolution {
            TypeNs::AdtId(AdtId::StructId(strukt)) => {
                let substs = ctx.substs_from_path(path, strukt.into(), true);
                let ty = self.db.ty(strukt.into());
                let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                forbid_unresolved_segments((ty, Some(strukt.into())), unresolved)
            }
            TypeNs::AdtId(AdtId::UnionId(u)) => {
                let substs = ctx.substs_from_path(path, u.into(), true);
                let ty = self.db.ty(u.into());
                let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                forbid_unresolved_segments((ty, Some(u.into())), unresolved)
            }
            TypeNs::EnumVariantId(var) => {
                let substs = ctx.substs_from_path(path, var.into(), true);
                let ty = self.db.ty(var.lookup(self.db.upcast()).parent.into());
                let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
                forbid_unresolved_segments((ty, Some(var.into())), unresolved)
            }
            TypeNs::SelfType(impl_id) => {
                let generics = crate::utils::generics(self.db.upcast(), impl_id.into());
                let substs = generics.placeholder_subst(self.db);
                let mut ty = self.db.impl_self_ty(impl_id).substitute(Interner, &substs);

                let Some(mut remaining_idx) = unresolved else {
                    return self.resolve_variant_on_alias(ty, None, mod_path);
                };

                let mut remaining_segments = path.segments().skip(remaining_idx);

                // We need to try resolving unresolved segments one by one because each may resolve
                // to a projection, which `TyLoweringContext` cannot handle on its own.
                while !remaining_segments.is_empty() {
                    let resolved_segment = path.segments().get(remaining_idx - 1).unwrap();
                    let current_segment = remaining_segments.take(1);

                    // If we can resolve to an enum variant, it takes priority over associated type
                    // of the same name.
                    if let Some((AdtId::EnumId(id), _)) = ty.as_adt() {
                        let enum_data = self.db.enum_data(id);
                        let name = current_segment.first().unwrap().name;
                        if let Some(variant) = enum_data.variant(name) {
                            return if remaining_segments.len() == 1 {
                                (ty, Some(variant.into()))
                            } else {
                                // We still have unresolved paths, but enum variants never have
                                // associated types!
                                (self.err_ty(), None)
                            };
                        }
                    }

                    // `lower_partly_resolved_path()` returns `None` as type namespace unless
                    // `remaining_segments` is empty, which is never the case here. We don't know
                    // which namespace the new `ty` is in until normalized anyway.
                    (ty, _) = ctx.lower_partly_resolved_path(
                        resolution,
                        resolved_segment,
                        current_segment,
                        false,
                    );

                    ty = self.table.insert_type_vars(ty);
                    ty = self.table.normalize_associated_types_in(ty);
                    ty = self.table.resolve_ty_shallow(&ty);
                    if ty.is_unknown() {
                        return (self.err_ty(), None);
                    }

                    // FIXME(inherent_associated_types): update `resolution` based on `ty` here.
                    remaining_idx += 1;
                    remaining_segments = remaining_segments.skip(1);
                }

                let variant = ty.as_adt().and_then(|(id, _)| match id {
                    AdtId::StructId(s) => Some(VariantId::StructId(s)),
                    AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
                    AdtId::EnumId(_) => {
                        // FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
                        None
                    }
                });
                (ty, variant)
            }
            TypeNs::TypeAliasId(it) => {
                let resolved_seg = match unresolved {
                    None => path.segments().last().unwrap(),
                    Some(n) => path.segments().get(path.segments().len() - n - 1).unwrap(),
                };
                let substs =
                    ctx.substs_from_path_segment(resolved_seg, Some(it.into()), true, None);
                let ty = self.db.ty(it.into());
                let ty = self.insert_type_vars(ty.substitute(Interner, &substs));

                self.resolve_variant_on_alias(ty, unresolved, mod_path)
            }
            TypeNs::AdtSelfType(_) => {
                // FIXME this could happen in array size expressions, once we're checking them
                (self.err_ty(), None)
            }
            TypeNs::GenericParam(_) => {
                // FIXME potentially resolve assoc type
                (self.err_ty(), None)
            }
            TypeNs::AdtId(AdtId::EnumId(_))
            | TypeNs::BuiltinType(_)
            | TypeNs::TraitId(_)
            | TypeNs::TraitAliasId(_) => {
                // FIXME diagnostic
                (self.err_ty(), None)
            }
        };

        fn forbid_unresolved_segments(
            result: (Ty, Option<VariantId>),
            unresolved: Option<usize>,
        ) -> (Ty, Option<VariantId>) {
            if unresolved.is_none() {
                result
            } else {
                // FIXME diagnostic
                (TyKind::Error.intern(Interner), None)
            }
        }
    }

    fn resolve_variant_on_alias(
        &mut self,
        ty: Ty,
        unresolved: Option<usize>,
        path: &ModPath,
    ) -> (Ty, Option<VariantId>) {
        let remaining = unresolved.map(|it| path.segments()[it..].len()).filter(|it| it > &0);
        let ty = match ty.kind(Interner) {
            TyKind::Alias(AliasTy::Projection(proj_ty)) => {
                self.db.normalize_projection(proj_ty.clone(), self.table.trait_env.clone())
            }
            _ => ty,
        };
        match remaining {
            None => {
                let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id {
                    AdtId::StructId(s) => Some(VariantId::StructId(s)),
                    AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
                    AdtId::EnumId(_) => {
                        // FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
                        None
                    }
                });
                (ty, variant)
            }
            Some(1) => {
                let segment = path.segments().last().unwrap();
                // this could be an enum variant or associated type
                if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() {
                    let enum_data = self.db.enum_data(enum_id);
                    if let Some(variant) = enum_data.variant(segment) {
                        return (ty, Some(variant.into()));
                    }
                }
                // FIXME potentially resolve assoc type
                (self.err_ty(), None)
            }
            Some(_) => {
                // FIXME diagnostic
                (self.err_ty(), None)
            }
        }
    }

    fn resolve_lang_item(&self, item: LangItem) -> Option<LangItemTarget> {
        let krate = self.resolver.krate();
        self.db.lang_item(krate, item)
    }

    fn resolve_output_on(&self, trait_: TraitId) -> Option<TypeAliasId> {
        self.db.trait_data(trait_).associated_type_by_name(&name![Output])
    }

    fn resolve_lang_trait(&self, lang: LangItem) -> Option<TraitId> {
        self.resolve_lang_item(lang)?.as_trait()
    }

    fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> {
        self.resolve_output_on(self.resolve_lang_trait(LangItem::Neg)?)
    }

    fn resolve_ops_not_output(&self) -> Option<TypeAliasId> {
        self.resolve_output_on(self.resolve_lang_trait(LangItem::Not)?)
    }

    fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
        let ItemContainerId::TraitId(trait_) = self
            .resolve_lang_item(LangItem::IntoFutureIntoFuture)?
            .as_function()?
            .lookup(self.db.upcast())
            .container
        else {
            return None;
        };
        self.resolve_output_on(trait_)
    }

    fn resolve_boxed_box(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(LangItem::OwnedBox)?.as_struct()?;
        Some(struct_.into())
    }

    fn resolve_range_full(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(LangItem::RangeFull)?.as_struct()?;
        Some(struct_.into())
    }

    fn resolve_range(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(LangItem::Range)?.as_struct()?;
        Some(struct_.into())
    }

    fn resolve_range_inclusive(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(LangItem::RangeInclusiveStruct)?.as_struct()?;
        Some(struct_.into())
    }

    fn resolve_range_from(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(LangItem::RangeFrom)?.as_struct()?;
        Some(struct_.into())
    }

    fn resolve_range_to(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(LangItem::RangeTo)?.as_struct()?;
        Some(struct_.into())
    }

    fn resolve_range_to_inclusive(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(LangItem::RangeToInclusive)?.as_struct()?;
        Some(struct_.into())
    }

    fn resolve_ops_index_output(&self) -> Option<TypeAliasId> {
        self.resolve_output_on(self.resolve_lang_trait(LangItem::Index)?)
    }

    fn resolve_va_list(&self) -> Option<AdtId> {
        let struct_ = self.resolve_lang_item(LangItem::VaList)?.as_struct()?;
        Some(struct_.into())
    }

    fn get_traits_in_scope(&self) -> Either<FxHashSet<TraitId>, &FxHashSet<TraitId>> {
        let mut b_traits = self.resolver.traits_in_scope_from_block_scopes().peekable();
        if b_traits.peek().is_some() {
            Either::Left(self.traits_in_scope.iter().copied().chain(b_traits).collect())
        } else {
            Either::Right(&self.traits_in_scope)
        }
    }
}

/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
pub(crate) enum Expectation {
    None,
    HasType(Ty),
    #[allow(dead_code)]
    Castable(Ty),
    RValueLikeUnsized(Ty),
}

impl Expectation {
    /// The expectation that the type of the expression needs to equal the given
    /// type.
    fn has_type(ty: Ty) -> Self {
        if ty.is_unknown() {
            // FIXME: get rid of this?
            Expectation::None
        } else {
            Expectation::HasType(ty)
        }
    }

    /// The following explanation is copied straight from rustc:
    /// Provides an expectation for an rvalue expression given an *optional*
    /// hint, which is not required for type safety (the resulting type might
    /// be checked higher up, as is the case with `&expr` and `box expr`), but
    /// is useful in determining the concrete type.
    ///
    /// The primary use case is where the expected type is a fat pointer,
    /// like `&[isize]`. For example, consider the following statement:
    ///
    ///     let it: &[isize] = &[1, 2, 3];
    ///
    /// In this case, the expected type for the `&[1, 2, 3]` expression is
    /// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
    /// expectation `ExpectHasType([isize])`, that would be too strong --
    /// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
    /// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
    /// to the type `&[isize]`. Therefore, we propagate this more limited hint,
    /// which still is useful, because it informs integer literals and the like.
    /// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
    /// for examples of where this comes up,.
    fn rvalue_hint(ctx: &mut InferenceContext<'_>, ty: Ty) -> Self {
        match ctx.struct_tail_without_normalization(ty.clone()).kind(Interner) {
            TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => Expectation::RValueLikeUnsized(ty),
            _ => Expectation::has_type(ty),
        }
    }

    /// This expresses no expectation on the type.
    fn none() -> Self {
        Expectation::None
    }

    fn resolve(&self, table: &mut unify::InferenceTable<'_>) -> Expectation {
        match self {
            Expectation::None => Expectation::None,
            Expectation::HasType(t) => Expectation::HasType(table.resolve_ty_shallow(t)),
            Expectation::Castable(t) => Expectation::Castable(table.resolve_ty_shallow(t)),
            Expectation::RValueLikeUnsized(t) => {
                Expectation::RValueLikeUnsized(table.resolve_ty_shallow(t))
            }
        }
    }

    fn to_option(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> {
        match self.resolve(table) {
            Expectation::None => None,
            Expectation::HasType(t)
            | Expectation::Castable(t)
            | Expectation::RValueLikeUnsized(t) => Some(t),
        }
    }

    fn only_has_type(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> {
        match self {
            Expectation::HasType(t) => Some(table.resolve_ty_shallow(t)),
            Expectation::Castable(_) | Expectation::RValueLikeUnsized(_) | Expectation::None => {
                None
            }
        }
    }

    fn coercion_target_type(&self, table: &mut unify::InferenceTable<'_>) -> Ty {
        self.only_has_type(table).unwrap_or_else(|| table.new_type_var())
    }

    /// Comment copied from rustc:
    /// Disregard "castable to" expectations because they
    /// can lead us astray. Consider for example `if cond
    /// {22} else {c} as u8` -- if we propagate the
    /// "castable to u8" constraint to 22, it will pick the
    /// type 22u8, which is overly constrained (c might not
    /// be a u8). In effect, the problem is that the
    /// "castable to" expectation is not the tightest thing
    /// we can say, so we want to drop it in this case.
    /// The tightest thing we can say is "must unify with
    /// else branch". Note that in the case of a "has type"
    /// constraint, this limitation does not hold.
    ///
    /// If the expected type is just a type variable, then don't use
    /// an expected type. Otherwise, we might write parts of the type
    /// when checking the 'then' block which are incompatible with the
    /// 'else' branch.
    fn adjust_for_branches(&self, table: &mut unify::InferenceTable<'_>) -> Expectation {
        match self {
            Expectation::HasType(ety) => {
                let ety = table.resolve_ty_shallow(ety);
                if ety.is_ty_var() {
                    Expectation::None
                } else {
                    Expectation::HasType(ety)
                }
            }
            Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety.clone()),
            _ => Expectation::None,
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Diverges {
    Maybe,
    Always,
}

impl Diverges {
    fn is_always(self) -> bool {
        self == Diverges::Always
    }
}

impl std::ops::BitAnd for Diverges {
    type Output = Self;
    fn bitand(self, other: Self) -> Self {
        std::cmp::min(self, other)
    }
}

impl std::ops::BitOr for Diverges {
    type Output = Self;
    fn bitor(self, other: Self) -> Self {
        std::cmp::max(self, other)
    }
}

impl std::ops::BitAndAssign for Diverges {
    fn bitand_assign(&mut self, other: Self) {
        *self = *self & other;
    }
}

impl std::ops::BitOrAssign for Diverges {
    fn bitor_assign(&mut self, other: Self) {
        *self = *self | other;
    }
}
/// A zipper that checks for unequal `{unknown}` occurrences in the two types. Used to filter out
/// mismatch diagnostics that only differ in `{unknown}`. These mismatches are usually not helpful.
/// As the cause is usually an underlying name resolution problem.
struct UnknownMismatch<'db>(&'db dyn HirDatabase);
impl chalk_ir::zip::Zipper<Interner> for UnknownMismatch<'_> {
    fn zip_tys(&mut self, variance: Variance, a: &Ty, b: &Ty) -> chalk_ir::Fallible<()> {
        let zip_substs = |this: &mut Self,
                          variances,
                          sub_a: &Substitution,
                          sub_b: &Substitution| {
            this.zip_substs(variance, variances, sub_a.as_slice(Interner), sub_b.as_slice(Interner))
        };
        match (a.kind(Interner), b.kind(Interner)) {
            (TyKind::Adt(id_a, sub_a), TyKind::Adt(id_b, sub_b)) if id_a == id_b => zip_substs(
                self,
                Some(self.unification_database().adt_variance(*id_a)),
                sub_a,
                sub_b,
            )?,
            (
                TyKind::AssociatedType(assoc_ty_a, sub_a),
                TyKind::AssociatedType(assoc_ty_b, sub_b),
            ) if assoc_ty_a == assoc_ty_b => zip_substs(self, None, sub_a, sub_b)?,
            (TyKind::Tuple(arity_a, sub_a), TyKind::Tuple(arity_b, sub_b))
                if arity_a == arity_b =>
            {
                zip_substs(self, None, sub_a, sub_b)?
            }
            (TyKind::OpaqueType(opaque_ty_a, sub_a), TyKind::OpaqueType(opaque_ty_b, sub_b))
                if opaque_ty_a == opaque_ty_b =>
            {
                zip_substs(self, None, sub_a, sub_b)?
            }
            (TyKind::Slice(ty_a), TyKind::Slice(ty_b)) => self.zip_tys(variance, ty_a, ty_b)?,
            (TyKind::FnDef(fn_def_a, sub_a), TyKind::FnDef(fn_def_b, sub_b))
                if fn_def_a == fn_def_b =>
            {
                zip_substs(
                    self,
                    Some(self.unification_database().fn_def_variance(*fn_def_a)),
                    sub_a,
                    sub_b,
                )?
            }
            (TyKind::Ref(mutability_a, _, ty_a), TyKind::Ref(mutability_b, _, ty_b))
                if mutability_a == mutability_b =>
            {
                self.zip_tys(variance, ty_a, ty_b)?
            }
            (TyKind::Raw(mutability_a, ty_a), TyKind::Raw(mutability_b, ty_b))
                if mutability_a == mutability_b =>
            {
                self.zip_tys(variance, ty_a, ty_b)?
            }
            (TyKind::Array(ty_a, const_a), TyKind::Array(ty_b, const_b)) if const_a == const_b => {
                self.zip_tys(variance, ty_a, ty_b)?
            }
            (TyKind::Closure(id_a, sub_a), TyKind::Closure(id_b, sub_b)) if id_a == id_b => {
                zip_substs(self, None, sub_a, sub_b)?
            }
            (TyKind::Coroutine(coroutine_a, sub_a), TyKind::Coroutine(coroutine_b, sub_b))
                if coroutine_a == coroutine_b =>
            {
                zip_substs(self, None, sub_a, sub_b)?
            }
            (
                TyKind::CoroutineWitness(coroutine_a, sub_a),
                TyKind::CoroutineWitness(coroutine_b, sub_b),
            ) if coroutine_a == coroutine_b => zip_substs(self, None, sub_a, sub_b)?,
            (TyKind::Function(fn_ptr_a), TyKind::Function(fn_ptr_b))
                if fn_ptr_a.sig == fn_ptr_b.sig && fn_ptr_a.num_binders == fn_ptr_b.num_binders =>
            {
                zip_substs(self, None, &fn_ptr_a.substitution.0, &fn_ptr_b.substitution.0)?
            }
            (TyKind::Error, TyKind::Error) => (),
            (TyKind::Error, _) | (_, TyKind::Error) => return Err(chalk_ir::NoSolution),
            _ => (),
        }

        Ok(())
    }

    fn zip_lifetimes(&mut self, _: Variance, _: &Lifetime, _: &Lifetime) -> chalk_ir::Fallible<()> {
        Ok(())
    }

    fn zip_consts(&mut self, _: Variance, _: &Const, _: &Const) -> chalk_ir::Fallible<()> {
        Ok(())
    }

    fn zip_binders<T>(
        &mut self,
        variance: Variance,
        a: &Binders<T>,
        b: &Binders<T>,
    ) -> chalk_ir::Fallible<()>
    where
        T: Clone
            + HasInterner<Interner = Interner>
            + chalk_ir::zip::Zip<Interner>
            + TypeFoldable<Interner>,
    {
        chalk_ir::zip::Zip::zip_with(self, variance, a.skip_binders(), b.skip_binders())
    }

    fn interner(&self) -> Interner {
        Interner
    }

    fn unification_database(&self) -> &dyn chalk_ir::UnificationDatabase<Interner> {
        &self.0
    }
}