1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
//! Disjunctive Normal Form construction.
//!
//! Algorithm from <https://www.cs.drexel.edu/~jjohnson/2015-16/fall/CS270/Lectures/3/dnf.pdf>,
//! which would have been much easier to read if it used pattern matching. It's also missing the
//! entire "distribute ANDs over ORs" part, which is not trivial. Oh well.
//!
//! This is currently both messy and inefficient. Feel free to improve, there are unit tests.

use std::fmt;

use rustc_hash::FxHashSet;

use crate::{CfgAtom, CfgDiff, CfgExpr, CfgOptions, InactiveReason};

/// A `#[cfg]` directive in Disjunctive Normal Form (DNF).
pub struct DnfExpr {
    conjunctions: Vec<Conjunction>,
}

struct Conjunction {
    literals: Vec<Literal>,
}

struct Literal {
    negate: bool,
    var: Option<CfgAtom>, // None = Invalid
}

impl DnfExpr {
    pub fn new(expr: CfgExpr) -> Self {
        let builder = Builder { expr: DnfExpr { conjunctions: Vec::new() } };

        builder.lower(expr)
    }

    /// Computes a list of present or absent atoms in `opts` that cause this expression to evaluate
    /// to `false`.
    ///
    /// Note that flipping a subset of these atoms might be sufficient to make the whole expression
    /// evaluate to `true`. For that, see `compute_enable_hints`.
    ///
    /// Returns `None` when `self` is already true, or contains errors.
    pub fn why_inactive(&self, opts: &CfgOptions) -> Option<InactiveReason> {
        let mut res = InactiveReason { enabled: Vec::new(), disabled: Vec::new() };

        for conj in &self.conjunctions {
            let mut conj_is_true = true;
            for lit in &conj.literals {
                let atom = lit.var.as_ref()?;
                let enabled = opts.enabled.contains(atom);
                if lit.negate == enabled {
                    // Literal is false, but needs to be true for this conjunction.
                    conj_is_true = false;

                    if enabled {
                        res.enabled.push(atom.clone());
                    } else {
                        res.disabled.push(atom.clone());
                    }
                }
            }

            if conj_is_true {
                // This expression is not actually inactive.
                return None;
            }
        }

        res.enabled.sort_unstable();
        res.enabled.dedup();
        res.disabled.sort_unstable();
        res.disabled.dedup();
        Some(res)
    }

    /// Returns `CfgDiff` objects that would enable this directive if applied to `opts`.
    pub fn compute_enable_hints<'a>(
        &'a self,
        opts: &'a CfgOptions,
    ) -> impl Iterator<Item = CfgDiff> + 'a {
        // A cfg is enabled if any of `self.conjunctions` evaluate to `true`.

        self.conjunctions.iter().filter_map(move |conj| {
            let mut enable = FxHashSet::default();
            let mut disable = FxHashSet::default();
            for lit in &conj.literals {
                let atom = lit.var.as_ref()?;
                let enabled = opts.enabled.contains(atom);
                if lit.negate && enabled {
                    disable.insert(atom.clone());
                }
                if !lit.negate && !enabled {
                    enable.insert(atom.clone());
                }
            }

            // Check that this actually makes `conj` true.
            for lit in &conj.literals {
                let atom = lit.var.as_ref()?;
                let enabled = enable.contains(atom)
                    || (opts.enabled.contains(atom) && !disable.contains(atom));
                if enabled == lit.negate {
                    return None;
                }
            }

            if enable.is_empty() && disable.is_empty() {
                return None;
            }

            let mut diff = CfgDiff {
                enable: enable.into_iter().collect(),
                disable: disable.into_iter().collect(),
            };

            // Undo the FxHashMap randomization for consistent output.
            diff.enable.sort_unstable();
            diff.disable.sort_unstable();

            Some(diff)
        })
    }
}

impl fmt::Display for DnfExpr {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.conjunctions.len() != 1 {
            write!(f, "any(")?;
        }
        for (i, conj) in self.conjunctions.iter().enumerate() {
            if i != 0 {
                f.write_str(", ")?;
            }

            write!(f, "{}", conj)?;
        }
        if self.conjunctions.len() != 1 {
            write!(f, ")")?;
        }

        Ok(())
    }
}

impl Conjunction {
    fn new(parts: Vec<CfgExpr>) -> Self {
        let mut literals = Vec::new();
        for part in parts {
            match part {
                CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => {
                    literals.push(Literal::new(part));
                }
                CfgExpr::All(conj) => {
                    // Flatten.
                    literals.extend(Conjunction::new(conj).literals);
                }
                CfgExpr::Any(_) => unreachable!("disjunction in conjunction"),
            }
        }

        Self { literals }
    }
}

impl fmt::Display for Conjunction {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.literals.len() != 1 {
            write!(f, "all(")?;
        }
        for (i, lit) in self.literals.iter().enumerate() {
            if i != 0 {
                f.write_str(", ")?;
            }

            write!(f, "{}", lit)?;
        }
        if self.literals.len() != 1 {
            write!(f, ")")?;
        }

        Ok(())
    }
}

impl Literal {
    fn new(expr: CfgExpr) -> Self {
        match expr {
            CfgExpr::Invalid => Self { negate: false, var: None },
            CfgExpr::Atom(atom) => Self { negate: false, var: Some(atom) },
            CfgExpr::Not(expr) => match *expr {
                CfgExpr::Invalid => Self { negate: true, var: None },
                CfgExpr::Atom(atom) => Self { negate: true, var: Some(atom) },
                _ => unreachable!("non-atom {:?}", expr),
            },
            CfgExpr::Any(_) | CfgExpr::All(_) => unreachable!("non-literal {:?}", expr),
        }
    }
}

impl fmt::Display for Literal {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.negate {
            write!(f, "not(")?;
        }

        match &self.var {
            Some(var) => write!(f, "{}", var)?,
            None => f.write_str("<invalid>")?,
        }

        if self.negate {
            write!(f, ")")?;
        }

        Ok(())
    }
}

struct Builder {
    expr: DnfExpr,
}

impl Builder {
    fn lower(mut self, expr: CfgExpr) -> DnfExpr {
        let expr = make_nnf(expr);
        let expr = make_dnf(expr);

        match expr {
            CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => {
                self.expr.conjunctions.push(Conjunction::new(vec![expr]));
            }
            CfgExpr::All(conj) => {
                self.expr.conjunctions.push(Conjunction::new(conj));
            }
            CfgExpr::Any(mut disj) => {
                disj.reverse();
                while let Some(conj) = disj.pop() {
                    match conj {
                        CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::All(_) | CfgExpr::Not(_) => {
                            self.expr.conjunctions.push(Conjunction::new(vec![conj]));
                        }
                        CfgExpr::Any(inner_disj) => {
                            // Flatten.
                            disj.extend(inner_disj.into_iter().rev());
                        }
                    }
                }
            }
        }

        self.expr
    }
}

fn make_dnf(expr: CfgExpr) -> CfgExpr {
    match expr {
        CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => expr,
        CfgExpr::Any(e) => CfgExpr::Any(e.into_iter().map(|expr| make_dnf(expr)).collect()),
        CfgExpr::All(e) => {
            let e = e.into_iter().map(|expr| make_nnf(expr)).collect::<Vec<_>>();

            CfgExpr::Any(distribute_conj(&e))
        }
    }
}

/// Turns a conjunction of expressions into a disjunction of expressions.
fn distribute_conj(conj: &[CfgExpr]) -> Vec<CfgExpr> {
    fn go(out: &mut Vec<CfgExpr>, with: &mut Vec<CfgExpr>, rest: &[CfgExpr]) {
        match rest {
            [head, tail @ ..] => match head {
                CfgExpr::Any(disj) => {
                    for part in disj {
                        with.push(part.clone());
                        go(out, with, tail);
                        with.pop();
                    }
                }
                _ => {
                    with.push(head.clone());
                    go(out, with, tail);
                    with.pop();
                }
            },
            _ => {
                // Turn accumulated parts into a new conjunction.
                out.push(CfgExpr::All(with.clone()));
            }
        }
    }

    let mut out = Vec::new();
    let mut with = Vec::new();

    go(&mut out, &mut with, conj);

    out
}

fn make_nnf(expr: CfgExpr) -> CfgExpr {
    match expr {
        CfgExpr::Invalid | CfgExpr::Atom(_) => expr,
        CfgExpr::Any(expr) => CfgExpr::Any(expr.into_iter().map(|expr| make_nnf(expr)).collect()),
        CfgExpr::All(expr) => CfgExpr::All(expr.into_iter().map(|expr| make_nnf(expr)).collect()),
        CfgExpr::Not(operand) => match *operand {
            CfgExpr::Invalid | CfgExpr::Atom(_) => CfgExpr::Not(operand.clone()), // Original negated expr
            CfgExpr::Not(expr) => {
                // Remove double negation.
                make_nnf(*expr)
            }
            // Convert negated conjunction/disjunction using DeMorgan's Law.
            CfgExpr::Any(inner) => CfgExpr::All(
                inner.into_iter().map(|expr| make_nnf(CfgExpr::Not(Box::new(expr)))).collect(),
            ),
            CfgExpr::All(inner) => CfgExpr::Any(
                inner.into_iter().map(|expr| make_nnf(CfgExpr::Not(Box::new(expr)))).collect(),
            ),
        },
    }
}